首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   9篇
生物科学   135篇
  2024年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   13篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   10篇
  2014年   7篇
  2013年   10篇
  2012年   13篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
1.
Anaerobic fermentation of glycerol in the Enterobacteriaceae family has long been considered a unique property of species that synthesize 1,3-propanediol (1,3-PDO). However, we have discovered that Escherichia coli can ferment glycerol in a 1,3-PDO-independent manner. We identified 1,2-propanediol (1,2-PDO) as a fermentation product and established the pathway that mediates its synthesis as well as its role in the metabolism of glycerol. We also showed that the trunk pathway responsible for the conversion of glycerol into glycolytic intermediates is composed of two enzymes: a type II glycerol dehydrogenase (glyDH-II) and a dihydroxyacetone kinase (DHAK), the former of previously unknown physiological role. Based on our findings, we propose a new model for glycerol fermentation in enteric bacteria in which: (i) the production of 1,2-PDO provides a means to consume reducing equivalents generated in the synthesis of cell mass, thus facilitating redox balance, and (ii) the conversion of glycerol to ethanol, through a redox-balanced pathway, fulfills energy requirements by generating ATP via substrate-level phosphorylation. The activity of the formate hydrogen-lyase and F(0)F(1)-ATPase systems were also found to facilitate the fermentative metabolism of glycerol, and along with the ethanol and 1,2-PDO pathways, were considered auxiliary or enabling. We demonstrated that glycerol fermentation in E. coli was not previously observed due to the use of medium formulations and culture conditions that impair the aforementioned pathways. These include high concentrations of potassium and phosphate, low concentrations of glycerol, alkaline pH, and closed cultivation systems that promote the accumulation of hydrogen gas.  相似文献   
2.
Molecular Biology Reports - Peri-implantitis (PI) is a multifactorial condition caused by the interactions of pathogens and the host immune response. Previous studies have demonstrated a...  相似文献   
3.
Glycerol has attracted the attention of scientific and industrial communities due to its generation in bulk quantities as a byproduct of biofuel industries. With the rapid growth of these industries in recent years, glycerol is frequently treated as a very low-value byproduct or even a waste product with a disposal cost associated to it. Glycerol is not only abundant and inexpensive but also can generate more reducing equivalents than glucose or xylose. This unique characteristic of glycerol offers a tremendous opportunity for its biological conversion to valuable products at higher yield. This review focuses on research efforts to utilize glycerol as a carbon source for the production of a variety of fuels and chemicals by both native and metabolically engineered microorganisms.  相似文献   
4.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   
5.
Probiotics and Antimicrobial Proteins - Data on the effects of probiotics on adipokines such as omentin-1, nesfatin-1, and adropin are limited. The aim of this study was to evaluate the effects of...  相似文献   
6.

Objectives

The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.

Spatio-Temporal Patterns of the Microbial Communities

Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.

Macrofauna, Microbes and the Benthic N-Cycle

Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.  相似文献   
7.
A feeding trial was conducted to investigate the effects of different levels of dietary Lactobacillus plantarum on hemato-immunological parameters and resistance against Streptococcus iniae infection in juvenile Siberian sturgeon Acipenser baerii. Fish (14.6 ± 2.3 g) were fed three experimental diets prepared by supplementing a basal diet with L. plantarum at different concentrations [1 × 107, 1 × 108 and 1 × 109 colony-forming units (cfu) g?1] and a control (non-supplemented basal) diet for 8 weeks. Innate immune responses (immunoglobulin (Ig), alternative complement activity (ACH50) and lysozyme activity) were significantly higher in fish fed the 1 × 108 and 1 × 109 cfu g?1 L. plantarum diet compared to the other groups (P < 0.05). Furthermore, fish fed on various levels of L. plantarum significantly showed higher red blood cell (RBC), hemoglobin (Hb), white blood cell (WBC) and monocyte compared to those of the control group (P < 0.05). At the end of the feeding experiment, some fish were challenged with S. iniae to quantify the level of disease resistance. The mortality after S. iniae challenge was decreased in fish fed a probiotic. These results indicated that dietary supplementation of L. plantarum improved immune response and disease resistance of Siberian sturgeon juvenile.  相似文献   
8.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   
9.
Vascular stents influence the post-procedural hemodynamic environment in ways that may encourage restenosis. Understanding how stents influence flow patterns may lead to more hemodynamically compatible stent designs that alleviate thrombus formation and promote endothelialization. This study employed time-resolved Digital Particle Image Velocimetry (DPIV) to compare the hemodynamic performance of two stents in a compliant vessel. The first stent was a rigid insert, representing an extreme compliance mismatch. The second stent was a commercially available nitinol stent with some flexural characteristics. DPIV showed that compliance mismatch promotes the formation of a ring vortex in the vicinity of the stent. Larger compliance mismatch increased both the size and residence time of the ring vortex, and introduced in-flow stagnation points. These results provide detailed quantitative evidence of the hemodynamic effect of stent mechanical properties. Better understanding of these characteristics will provide valuable information for modifying stent design in order to promote long-term patency.  相似文献   
10.
The C-terminal, 19-kDa domain of Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) is among the leading vaccine candidate for malaria due to its essential role in erythrocyte invasion by the parasite. We designed a synthetic gene for optimal expression of recombinant PfMSP-119 in Escherichia coli and developed a scalable process to obtain high-quality PfMSP-119. The synthetic gene construct yielded a fourfold higher expression level of PfMSP-119 in comparison to the native gene construct. Optimization of cultivation conditions in the bioreactor indicated important role of yeast extract and substrate feeding strategy for obtaining enhanced expression of soluble and correctly folded PfMSP-119. It was observed that the higher expression level of PfMSP-119 was essentially associated with the generation of higher level of incorrectly folded PfMSP-119. A simple purification procedure comprising metal affinity and ion exchange chromatography was developed to purify correctly folded form of PfMSP-119 from cell lysate. Biochemical and biophysical characterization of purified PfMSP-119 suggested that it was highly pure, homogeneous, and correctly folded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号