首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   43篇
生物科学   449篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   7篇
  2016年   13篇
  2015年   27篇
  2014年   22篇
  2013年   30篇
  2012年   28篇
  2011年   38篇
  2010年   38篇
  2009年   21篇
  2008年   24篇
  2007年   30篇
  2006年   23篇
  2005年   29篇
  2004年   23篇
  2003年   14篇
  2002年   15篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有449条查询结果,搜索用时 0 毫秒
1.
2.
3.
Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host’s inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.  相似文献   
4.
Type III secreted effectors (T3SEs), such as Pseudomonas syringae HopZ1, are essential bacterial virulence proteins injected into the host cytosol to facilitate infection. However, few direct targets of T3SEs are known. Investigating the target(s) of HopZ1 in soybean, a natural P. syringae host, we find that HopZ1 physically interacts with the isoflavone biosynthesis enzyme, 2-hydroxyisoflavanone dehydratase (GmHID1). P. syringae infection induces gmhid1 expression and production of daidzein,?a major soybean isoflavone. Silencing gmhid1 increases susceptibility to P. syringae infection, supporting a role for GmHID1 in innate immunity. P.?syringae expressing active but not the catalytic mutant of HopZ1 inhibits daidzein induction and promotes bacterial multiplication in soybean. HopZ1-enhanced P. syringae multiplication is at least partially dependent on GmHID1. Thus, GmHID1 is a virulence target of HopZ1 to promote P. syringae infection of soybean. This work highlights the isoflavonoid biosynthesis pathway as an antibacterial defense mechanism and a direct T3SE target.  相似文献   
5.
6.
Breast cancer subtype-specific molecular variations can dramatically affect patient responses to existing therapies. It is thought that differentially phosphorylated protein isoforms might be a useful prognostic biomarker of drug response in the clinic. However, the accurate detection and quantitative analysis of cancer-related protein isoforms and phospho-isoforms in tumors are limited by current technologies. Using a novel, fully automated nanocapillary electrophoresis immunoassay (NanoProTM 1000) designed to separate protein molecules based on their isoelectric point, we developed a reliable and highly sensitive assay for the detection and quantitation of AKT isoforms and phosphoforms in breast cancer. This assay enabled the measurement of activated AKT1/2/3 in breast cancer cells using protein produced from as few as 56 cells. Importantly, we were able to assign an identity for the phosphorylated S473 phosphoform of AKT1, the major form of activated AKT involved in multiple cancers, including breast, and a current focus in clinical trials for targeted intervention. The ability of our AKT assay to detect and measure AKT phosphorylation from very low amounts of total protein will allow the accurate evaluation of patient response to drugs targeting activated PI3K-AKT using scarce clinical specimens. Moreover, the capacity of this assay to detect and measure all three AKT isoforms using one single pan-specific antibody enables the study of the multiple and variable roles that these isoforms play in AKT tumorigenesis.Activation of the PI3K-AKT signaling pathway is one of the most common events in cancer (1, 2). Pathway activation can confer a number of advantages to the cancer cells, including enhanced proliferation and survival (1, 2). Multiple mechanisms exist by which the pathway may become activated, including amplification or activation of receptor tyrosine kinases (e.g. ERBB2 in breast and EGFR in lung tumors), mutation of the catalytic or regulatory subunits of PI3K (e.g. PIK3CA in colorectal and breast tumors), loss of the negative regulator PTEN (e.g. mutation in prostate and melanoma), and gain of function of AKT (e.g. amplification or mutation in breast and pancreatic tumors) (reviewed in Refs. 1 and 2).AKT represents a central node in the PI3K signaling cascade (3). AKT is recruited to the cell membrane via its pleckstrin homology domain when PI3K phosphorylates PIP2 to form PIP3 (4, 5). Following recruitment, AKT is phosphorylated by PDK1 and the rictor-mTOR complex, resulting in conformational changes and activation of the protein (58). Multiple studies have shown that the phosphorylation of AKT leads to the phosphorylation and activation of downstream effectors of the signaling pathway, such as mTOR complex 1 and S6K (reviewed in Ref. 1). The central role of this pathway in cancer is further underscored by the efforts of multiple pharmaceutical companies that have developed inhibitors against AKT as potential anti-oncogenic therapeutics (9).Despite the importance of AKT in growth and survival signaling in cancer, there are surprisingly few data that address the specific roles played in growth and survival by the multiple AKT family members (AKT-1, -2, and -3) and different phosphorylation and putative phosphorylation sites that can potentially activate the protein. Western blot analysis has been the foundation of most AKT studies, but in many cases pan-AKT antibodies have been employed that fail to distinguish between the different AKT isoforms. Recent siRNA silencing studies have indicated distinct functions for different AKT family members within a cell (10, 11). Moreover, there is evidence in breast cancer that the three isoforms exhibit different localizations and therefore must have at least partially distinct functions (12). Similarly, evidence is mounting for multiple phosphorylation sites in AKT beyond the two most studied phosphorylation events (Thr-308 and Ser-473) (58). Phosphorylation at serine and threonine residues at Thr-72 and Ser-246 may be required for the activation or regulation of kinase activity (13). The functional significance of constitutive phosphorylation of Ser-124 and Thr-450 is still unknown (14). Finally, there is evidence that phosphorylation of tyrosine residues at Tyr-315 and Tyr-326 is required for full kinase activity (15).Analysis of such phospho- and isoform-specific activation often requires complicated in-depth analyses using large quantities of proteins, purified recombinant protein, immunoprecipitation, incorporation of 32P isotopes, and/or mass spectroscopy, which makes such studies more difficult to perform and not easily adaptable to clinical specimens. Thus, better methods are required for the accurate assessment of both phosphoform and isoform usage in cells with an activated PI3K-AKT pathway and the effects of pathway inhibitors using relatively small amounts of starting material. We describe here the development of such an assay using nanocapillary-based isoelectric focusing (16). This approach allows the separation of AKT into distinct peaks that correspond to different iso- and phosphoforms using a small amount of starting material and a single pan-specific antibody. This approach should allow for more accurate determinations of isoform usage in different cell types, as well as of changes in phosphorylation states in response to pathway inhibition, including in clinical specimens.  相似文献   
7.
Virus recognition and response by the innate immune system are critical components of host defense against infection. Activation of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like receptor (RLR) protein family that recognize viral RNA and activate defense programs that suppress infection. We evaluated the individual functions of RIG-I and MDA5 both in vitro and in vivo in pathogen recognition and control of WNV. Lack of RIG-I or MDA5 alone results in decreased innate immune signaling and virus control in primary cells in vitro and increased mortality in mice. We also generated RIG-I−/− × MDA5−/− double-knockout mice and found that a lack of both RLRs results in a complete absence of innate immune gene induction in target cells of WNV infection and a severe pathogenesis during infection in vivo, similar to findings for animals lacking MAVS, the central adaptor molecule for RLR signaling. We also found that RNA products from WNV-infected cells but not incoming virion RNA display at least two distinct pathogen-associated molecular patterns (PAMPs) containing 5′ triphosphate and double-stranded RNA that are temporally distributed and sensed by RIG-I and MDA5 during infection. Thus, RIG-I and MDA5 are essential PRRs that recognize distinct PAMPs that accumulate during WNV replication. Collectively, these experiments highlight the necessity and function of multiple related, cytoplasmic host sensors in orchestrating an effective immune response against an acute viral infection.  相似文献   
8.
9.
M-cells (microfold cells) are thought to be a primary conduit of intestinal antigen trafficking. Using an established neutralizing anti-RANKL (Receptor Activator of NF-κB Ligand) antibody treatment to transiently deplete M-cells in vivo, we sought to determine whether intestinal M-cells were required for the effective induction of protective immunity following oral vaccination with ΔiglB (a defined live attenuated Francisella novicida mutant). M-cell depleted, ΔiglB-vaccinated mice exhibited increased (but not significant) morbidity and mortality following a subsequent homotypic or heterotypic pulmonary F. tularensis challenge. No significant differences in splenic IFN-γ, IL-2, or IL-17 or serum antibody (IgG1, IgG2a, IgA) production were observed compared to non-depleted, ΔiglB-vaccinated animals suggesting complementary mechanisms for ΔiglB entry. Thus, we examined other possible routes of gastrointestinal antigen sampling following oral vaccination and found that ΔiglB co-localized to villus goblet cells and enterocytes. These results provide insight into the role of M-cells and complementary pathways in intestinal antigen trafficking that may be involved in the generation of optimal immunity following oral vaccination.  相似文献   
10.
Chronic activation of the complement system and induced inflammation are associated with neuropathology in Alzheimer’s disease (AD). Recent large genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the C3b/C4b receptor (CR1 or CD35) that are associated with late onset AD. Here, anti-CR1 antibodies (Abs) directed against different epitopes of the receptor, were used to localize CR1 in brain, and relative binding affinities of the CR1 ligands, C1q and C3b, were assessed by ELISA. Most Abs tested stained red blood cells in blood vessels but showed no staining in brain parenchyma. However, two monoclonal anti-CR1 Abs labeled astrocytes in all of the cases tested, and this reactivity was preabsorbed by purified recombinant human CR1. Human brain-derived astrocyte cultures were also reactive with both mAbs. The amount of astrocyte staining varied among the samples, but no consistent difference was conferred by diagnosis or the GWAS-identified SNPs rs4844609 or rs6656401. Plasma levels of soluble CR1 did not correlate with diagnosis but a slight increase was observed with rs4844609 and rs6656401 SNP. There was also a modest but statistically significant increase in relative binding activity of C1q to CR1 with the rs4844609 SNP compared to CR1 without the SNP, and of C3b to CR1 in the CR1 genotypes containing the rs6656401 SNP (also associated with the larger isoform of CR1) regardless of clinical diagnosis. These results suggest that it is unlikely that astrocyte CR1 expression levels or C1q or C3b binding activity are the cause of the GWAS identified association of CR1 variants with AD. Further careful functional studies are needed to determine if the variant-dictated number of CR1 expressed on red blood cells contributes to the role of this receptor in the progression of AD, or if another mechanism is involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号