首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
自然科学   5篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
为减小平板型空滤器流动阻力以增大进气量,对平板型空滤器流动阻力特性开展了实验研究,获得了空滤器流动阻力随流量变化的规律和阻力构成成分。阻力随流量的增大而加速增大,滤芯阻力约占整个空滤器阻力的一半,入口流量为120m3/h时,总阻力为915.3Pa,滤芯阻力为426.4Pa。在实验获得滤芯阻力参数的基础上,提出采用多孔介质跃升模型对平板型空滤器内部流场开展三维数值仿真分析,结果表明,仿真结果与实验结果比较吻合,最大误差为5.67%。滤芯阻力同样约占整个阻力的一半,另一半阻力主要为出口处阻力,其余壁面阻力约占15%。最后,在实验和仿真分析的基础上,提出了改进模型并进行了仿真分析。结果表明,改进模型阻力有较大程度的下降,入口流量为120m3/h时,总阻力为588.2Pa,较原始模型下降了32.2%;增大空滤器流通横截面积是减小阻力以增大进气量的有效手段,改进空滤器壁面的平滑性是补充措施。  相似文献   
2.
微型内燃机微燃烧过程对当量比和转速变化非常敏感,采用层流有限速率模型和甲醇氧化反应机理对其预混层流微燃烧过程开展仿真研究,探讨当量比和转速对微燃烧特性的影响规律及临界运行参数。在此基础上,提出采用热着火理论和化学反应动力学理论探索当量比对微燃烧特性的影响机理。结果表明仿真与实验比较吻合。当量比从0.6增加到1.1时,燃烧速率增加,压力和温度增加,压力最高值增加约1.5E+6Pa,温度最大值增加约1 300K,此后随当量比增加,燃烧速率减小,压力和温度减小。研究还进一步揭示了当量比影响微燃烧特性的机理:稀燃区当量比主要通过温度变化来影响微燃烧特性,随当量比增加,燃料浓度增加,燃烧释放的总热量增加,所以温度和压力增加,燃烧速率增加;浓燃区当量比主要通过氧气量变化来影响微燃烧特性,当量比越大,氧气量越不足,基元反应速率越小,所以燃烧速率越小,温度和压力越低。转速越高,燃烧时间越短,燃烧越不充分,所以温度、压力越低。受微燃烧相对热损大、驻留时间短的特征影响,微型发动机实现完全燃烧的运行区域较窄,其实现完全燃烧的稀燃极限约0.9,最高转速约6 000r/min。这在设计微型内燃机时值得关注。  相似文献   
3.
为了研究燃烧室热边界对微型内燃机微燃烧特性的影响,以指导燃烧室设计,采用层流有限速率模型对微燃烧过程进行了仿真。首先对仿真结果开展了有效性分析,探讨了网格尺寸、时间步长、步长内最大计算步数3个建模因素对仿真结果的影响,结果表明仿真与实验比较吻合。在此基础上探索了散热系数、壁面厚度和材料3个参数对燃烧特性的影响。结果表明,散热系数对燃烧特性有较明显的影响,散热系数从0增加到55 W/(m2·K )时,压力升高率减小,着火点延后,最高压力值下降了2个大气压。壁面厚度和材料对燃烧特性影响不大,分析表明这是由于在热量从缸内传到外界环境的热流路径中主要传热热阻是外壁面与环境之间的对流换热热阻所致。  相似文献   
4.
能源动力专业人才是国家节能减排工作的重要人才队伍,也是各能源领域的未来工程师,对国家的能源工程发展建设起着至关重要的作用,高校对人才的培养应适应时代发展需求,结合国家的政策,以社会需求为向导,优化教学模式,把对人才的教育作为国家政策实施的初始阶段,对提高学生社会竞争力,提高学生就业层次和就业率也将起着有效的促进作用,该文基于传统教学模式,提出了提高学生工程设计能力所应加强的重点方面,为能源动力专业的高层次人才培养提供了一定理论支持。  相似文献   
5.
周向涡轮结构简单,适应于微型化。为了对发展出的周向六叶片微型涡轮结构进行评价和改进以及分析叶顶间隙对流动的影响,对其内部流场建立三维瞬态数值仿真模型,仿真其输出特性和内部工质流动特性。发现六叶片涡轮存在结构缺陷,运转时进出口周期性连通,部分工质未做功即排出。改进出八叶片微型涡轮,并对其进行仿真,结果显示八叶片涡轮没有上述缺陷。对不同叶顶间隙涡轮内流场进行仿真,结果表明叶顶相对间隙对压力损失的影响呈现非线性关系,间隙小于0.01后,压力损失对间隙变化非常敏感;间隙大于0.02后,其对压力损失的影响已经非常小。仿真和实验结果都表明,八叶片涡轮和六叶片涡轮输出机械功率随工质流量的增加而增加。八叶片涡轮最大机械功率为1 355mW,较六叶片涡轮提高10.5%,八叶片涡轮功率启动输出的流量为140L/h,小于六叶片涡轮的200L/h,八叶片涡轮性能优于六叶片涡轮。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号