首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
工业技术   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Omidi  M.  Arab  B.  Rasanan  A. H. Hadian  Rad  J. A.  Parand  K. 《Engineering with Computers》2021,37(2):1635-1655

In this paper, size-dependent dynamic stability of axially loaded functionally graded (FG) composite truncated conical microshells with magnetostrictive facesheets surrounded by nonlinear viscoelastic foundations including a two-parameter Winkler–Pasternak medium augmented via a Kelvin–Voigt viscoelastic approach is analyzed considering nonlinear cubic stiffness. To this purpose, von Karman-type kinematic nonlinearity along with modified couple stress theory of elasticity was applied to third-order shear deformation conical shell theory in the presence of magnetic permeability tensor and magnetic fluxes. The numerical technique of generalized differential quadrature (GDQ) was used for the solution of microstructural-dependent dynamic stability responses of FG composite truncated conical microshells. It was seen that moving from prebuckling to postbuckling domain somehow increased the significance of couple stress type of size dependency on frequency. In addition, within both prebuckling and postbuckling regimes, an increase of material gradient index decreased the importance of couple stress type of size dependency on the frequency of an axially loaded FG composite truncated conical microshell. Furthermore, it was revealed that by applying a positive magnetic field to an axially loaded truncated conical microshell with magnetostrictive facesheets, its frequency at a specific axial load value was increased in prebuckling domain and decreased in postbuckling domain. However, this pattern was reversed by applying a negative magnetic field.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号