首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   34篇
  国内免费   1篇
工业技术   655篇
  2024年   4篇
  2023年   21篇
  2022年   47篇
  2021年   95篇
  2020年   42篇
  2019年   55篇
  2018年   46篇
  2017年   40篇
  2016年   35篇
  2015年   22篇
  2014年   26篇
  2013年   40篇
  2012年   27篇
  2011年   20篇
  2010年   18篇
  2009年   20篇
  2008年   7篇
  2007年   11篇
  2006年   15篇
  2005年   3篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1998年   9篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   5篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有655条查询结果,搜索用时 9 毫秒
1.
2.
A series of polyurethane (PU) elastomers was prepared by the reaction of poly(?‐caprolactone) and 4,4′‐diphenylmethane diisocyanate, which was extended with a series of chain extenders (CEs) having 2–10 methylene units in their structure. The completion of the reaction was confirmed by Fourier transform infrared spectroscopy. The chemical structures of the synthesized PU samples were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy, and the thermal properties were determined by thermogravimetric analysis, DSC, and dynamic mechanical thermal analysis techniques. The mechanical properties were also studied and are discussed. The thermogravimetric analysis and DSC analysis showed that CE length had a considerable effect on the thermal properties of the prepared samples. The dynamic mechanical thermal analysis and damping peaks were also affected by the number of methylene units in the CE length. The elastomer extended with 1,2‐ethane diol exhibited optimum thermal properties, whereas the elastomer based on 1,10‐decane diol displayed the worst thermal properties. Tensile strength and elongation at break decreased with increasing CE length, whereas hardness showed the opposite trend. The glass‐transition temperature moved toward lower temperatures with increasing CE length. The decrease in the glass‐transition temperature and tensile properties were interpreted in terms of decreasing hard segments and increasing chain flexibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
3.
Neural Computing and Applications - Detecting and correcting misspelled words in a written text are of great importance in many natural language processing applications. Errors can be broadly...  相似文献   
4.
The productivity of agricultural produce is fairly dependent on the availability of nutrients and efficient use. Magnesium (Mg2+) is an essential macronutrient of living cells and is the second most prevalent free divalent cation in plants. Mg2+ plays a role in several physiological processes that support plant growth and development. However, it has been largely forgotten in fertilization management strategies to increase crop production, which leads to severe reductions in plant growth and yield. In this review, we discuss how the Mg2+ shortage induces several responses in plants at different levels: morphological, physiological, biochemical and molecular. Additionally, the Mg2+ uptake and transport mechanisms in different cellular organelles and the role of Mg2+ transporters in regulating Mg2+ homeostasis are also discussed. Overall, in this review, we critically summarize the available information about the responses of Mg deficiency on plant growth and development, which would facilitate plant scientists to create Mg2+-deficiency-resilient crops through agronomic and genetic biofortification.  相似文献   
5.
6.
Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody–antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.  相似文献   
7.
Thermoelectric properties of two antiperovskites SbNCa3 and BiNCa3 are calculated using first principles calculations. High values of Seebeck coefficients are observed for these materials. Electrical and thermal conductivities are also calculated. Increase in thermal conductivity and decrease in electrical conductivity are found with increasing temperature. The maximum values of thermal conductivity are 92×1014  W/m K s and 88×1014  W/m K s for SbNCa3 and BiNCa3 respectively at a temperature of 900 K. The peak values of 5×1020/Ω m s and 5.2×1020/Ω m s are achieved for n-type SbNCa3 and BiNCa3 respectively at a temperature of 300 K. Figure of merit is achieved for these materials at room temperature which shows that these materials can be useful for thermoelectric devices and alternative energy sources.  相似文献   
8.
In this study, phenolated wood resin was used an adsorbent for the removal of Cr(III), Ni(II), Zn(II), Co(II) ions by adsorption from aqueous solution. The adsorption of metal ions from solution was carried at different contact times, concentrations and pHs at room temperature (25°C). For individual metal ion, the amount of metal ions adsorbed per unit weight of phenolated wood resin at equilibrium time increased with increasing concentration and pH. Also, when the amounts of metal ions adsorbed are compared to each other, it was seen that this increase was order of Cr(III) > Ni(II) > Zn(II) > Co(II). This increase was order of Cr(III) > Ni(II) > Co(II) > Zn(II) for commercial phenol–formaldehyde resin. Kinetic studies showed that the adsorption process obeyed the intraparticle diffusion model. It was also determined that adsorption isotherm followed Langmuir and Freundlich models. Adsorption isotherm obtained for commercial phenol–formaldehyde resin was consistent with Freundlich model well. Adsorption capacities from Langmuir isotherm for commercial phenol–formaldehyde resin were higher than those of phenolated wood resin, in the case of individual metal ions. Original adsorption isotherm demonstrated the monolayer coverage of the surface of phenolated wood resin. Adsorption kinetic followed the intraparticle diffusion model. The positive values of ΔG° determined using the equilibrium constants showed that the adsorption was not of spontaneous nature. It was seen that values of distribution coefficient (KD) decreasing with metal ion concentration in solution at equilibrium (Ce) indicated that the occupation of active surface sites of adsorbent increased with metal ions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2838–2846, 2006  相似文献   
9.
Tariq  Junaid  Armghan  Ammar  Ijaz  Amir  Ashraf  Imran 《Multimedia Tools and Applications》2021,80(14):21449-21464
Multimedia Tools and Applications - The High Efficiency Video Coding (HEVC) efficiently reduces the size of the multimedia contents, but at the cost of high computation complexity. In order to make...  相似文献   
10.
Polyethylene terephthalate (PET)/nano-hydroxyapatite (nHAp) composite granules were obtained using twin-screw extruder. Preforms were prepared by injection molding and then PET/nHAp bottles were produced by blow molding. For PET bottles with nHAp, the migration amounts of carboxylic acid (COOH), acetaldehyde (AA), diethylene glycol (DEG), and isophthalic acid (IPA); glass transition temperature (Tg); melting temperature (Tm); and the maximum crystallization temperature (Tcry) were measured. The load-carrying capacity, burst strength, stress cracking, and regional material distribution tests were carried out on the bottles. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and ultraviolet transmittance analyses were conducted to explain the changes in mechanical, chemical, physical properties, and light transmission of bottles. It was found out that the COOH amount increased and the AA content decreased with increasing nHAp amount. On the other hand, no change was observed in the amounts of DEG and IPA. Although the mechanical properties such as load-carrying capacity and burst strength of the bottles have improved, it has been determined that the standard environmental stress crack resistance test procedure cannot be applied to such a composite. Experimental findings indicate that nHAp disrupts the chemical structure of PET and it isolates harmful chemicals such as AA by forming intermolecular bonds. Moreover, with the addition of up to 0.8% nHAp, PET bottles block the light transmission approximately 80% within 400–700 nm wave length zone. The study demonstrates that the PET/nHAp composite bottles can be used in the food industry, particularly in the packaging of milk and milk products which are vulnerable to light exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号