首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   7篇
  国内免费   1篇
工业技术   191篇
  2023年   3篇
  2022年   8篇
  2021年   14篇
  2020年   7篇
  2019年   12篇
  2018年   10篇
  2017年   11篇
  2016年   10篇
  2015年   8篇
  2014年   6篇
  2013年   17篇
  2012年   5篇
  2011年   9篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1989年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有191条查询结果,搜索用时 0 毫秒
1.
Previous studies have shown that a human insulin receptor lacking the COOH-terminal 43-amino acid domain (HIR delta CT) displays a compromised ability to stimulate glucose transport and glycogen synthase, whereas mitogenic signaling and stimulation of the insulin receptor tyrosine kinase activity remain intact (Maegawa, H., McClain, D. A., Freidenberg, G., Olefsky, J. M., Napier, M., Lipari, T., Dull, T. J., Lee, J., and Ullrich, A. (1988) J. Biol. Chem. 263, 8912-8917). In this study, we examined the effect of insulin on protein phosphatase 1 (PP-1) activity and phosphorylation in cells expressing wild-type human insulin receptor (HIRc) and HIR delta CT cells using phosphorylase alpha as substrate in the presence of 3 nM okadaic acid. Basal PP-1 activity was significantly lower in HIR delta CT than in HIRc cells (p < 0.05). Insulin stimulated PP-1 activity in HIRc cells (25-30% increase over basal activity) in a time- and dose-dependent manner. Insulin failed to stimulate PP-1 activity in HIR delta CT cells. Western blotting with the catalytic subunit antibody and the regulatory subunit antibody revealed similar amounts of the 37-kDa band (catalytic subunit) and the 160-kDa band (presumed regulatory subunit) in HIRc and HIR delta CT cells. We conclude that the COOH-terminal domain of the insulin receptor is an important element in mediating the effect of insulin on PP-1 and suggest that activation of PP-1 may be linked to signaling insulin's metabolic actions.  相似文献   
2.
In the last two decades, global environmental change has increased abiotic stress on plants and severely affected crops. For example, drought stress is a serious abiotic stress that rapidly and substantially alters the morphological, physiological, and molecular responses of plants. In Arabidopsis, several drought-responsive genes have been identified; however, the underlying molecular mechanism of drought tolerance in plants remains largely unclear. Here, we report that the “domain of unknown function” novel gene DUF569 (AT1G69890) positively regulates drought stress in Arabidopsis. The Arabidopsis loss-of-function mutant atduf569 showed significant sensitivity to drought stress, i.e., severe wilting at the rosette-leaf stage after water was withheld for 3 days. Importantly, the mutant plant did not recover after rewatering, unlike wild-type (WT) plants. In addition, atduf569 plants showed significantly lower abscisic acid accumulation under optimal and drought-stress conditions, as well as significantly higher electrolyte leakage when compared with WT Col-0 plants. Spectrophotometric analyses also indicated a significantly lower accumulation of polyphenols, flavonoids, carotenoids, and chlorophylls in atduf569 mutant plants. Overall, our results suggest that novel DUF569 is a positive regulator of the response to drought in Arabidopsis.  相似文献   
3.
A series of polyurethane (PU)/poly(vinylidene chloride) (PVDC) interpenetrating polymer networks (IPNs) were synthesized through variations in the amounts of the prepolyurethane and vinylidene chloride monomer via sequential polymerization (80/20, 60/40, 50/50, 40/60, 30/70, and 20/80 PU/PVDC). The physicomechanical and optical properties of the IPNs were investigated. Thermogravimetric analysis (TGA) studies of the IPNs were performed to establish their thermal stability. TGA thermograms showed that the thermal degradation of the IPNs proceeded in three steps. Microcrystalline parameters, such as the crystal size and lattice disorder, of the PU/PVDC IPNs were estimated with wide‐angle X‐ray scattering. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1375–1381, 2007  相似文献   
4.
Acacia caesia (L.) Willd (soap bark) fiber is an abundant natural resource, that is rich in cellulose. The study reports the effective utilization of underutilized Acacia caesia fiber for the isolation of nanocellulose whiskers. The nanocellulose whiskers were isolated successfully from Acacia caesia fibers by following alkali, bleaching, and sulfuric acid treatment. The obtained nanocellulose whiskers were carefully investigated for its chemical composition, structure, morphology, crystallinity, and thermal stability. The chemical composition and Fourier transform infrared spectra of nanocellulose whiskers showed the elimination of the non-cellulosic parts present in the raw Acacia caesia fibers. The X-ray diffraction analysis showed an upsurge in the crystallinity of the cellulose fibers after the chemical treatments. The isolation of nanocellulose whiskers from Acacia caesia raw fiber was confirmed by electron microscopy analysis. The thermogravimetric analysis showed remarkably high char residue for the nanocellulose whiskers compared to raw fibers. Based on the properties of nanocellulose whiskers, it can be concluded that the nanocellulose whiskers produced from Acacia caesia raw fibers are potential reinforcing material for developing high-performance green composites.  相似文献   
5.
Corrosion fatigue behaviour of four types of austenitic stainless steels were investigated in boiling 45% magnesium chloride solution at a stress ratio of 0.25 and a frequency of 0.1 Hz. Type 316LN stainless steel possessed the best resistance and type 304 stainless steel had the lowest resistance to corrosion fatigue. XPS studies on the fracture surface indicated that the presence of nitrogen as ion in the surface film of type 316LN stainless steel gave it the highest resistance to corrosion fatigue. Fractographic examination showed wholly transgranular cracking in all cases.  相似文献   
6.
The methylene diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethane/polybutyl methacrylate (PU/PBMA‐50/50) interpenetrating polymer network (IPN) membranes have been prepared. The molecular migration of n‐alkane penetrants such as hexane, heptane, octane, nonane, and decane through PU/PBMA (50/50) membranes has been studied at 25, 40, and 60°C using a weight gain method. From the sorption results, diffusion (D) and permeation (P) coefficients of n‐alkane penetrants have been calculated. Molecular migration depends on membrane‐solvent interactions, size of the penetrants, temperature, and availability of free volume within the membrane matrix. Attempts have been made to estimate the parameters of an empirical equation and these data suggest that molecular transport follows Fickian mode. From a study of temperature dependence of transport parameters, activation energy for diffusion (ED) and permeation (EP) have been estimated from the Arrhenius relation. Furthermore, sorption results have been interpreted in terms of enthalpy (ΔH) and entropy (ΔS) of sorption. The liquid concentration profiles have been computed using Fick's equation with appropriate initial and boundary conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 739–746, 2003  相似文献   
7.
Hydrodynamic studies on three-phase fluidized bed using CFD analysis   总被引:1,自引:0,他引:1  
Three-phase fluidization refers to fluidization of solid particles by co-current, upward flow of gas and liquid-phases for the purpose of bringing three-phases in contact in a single operation. Due to complications in understanding hydrodynamics of three-phase fluidized bed, CFD analysis is used to predict the hydrodynamics of it. In this study, liquid-phase is water which flows continuously, where as the gas phase is air which is distributed discretely throughout the bed. Ceramic particle of 1 mm diameter, density of 2650 kg/m3 is used as a solid phase. Excellent mixing, heat and mass transfer rates are the unique features of three-phase fluidized bed. The selection of distributor plays an important role in the quality of fluidization [1]. CFD model is created as the realistic representation of actual fluidized bed. The liquid and solid flow is represented by the mixture model. The air is injected from the bottom of the fluidized by means of discrete phase method (DPM). Simulation results are obtained by using porous jump and porous zone model to represent the distributor. It is found that porous zone model is best applicable in the industries, since stability of operating conditions is achieved even with non-uniform air, water flowrates and with different bed heights(100 mm, 200 mm, 300 mm, 400 mm and 500 mm).Simulated Pressure drop values of the fluidized bed have good agreement with the experimental findings. As the gas flowrate increases, the pressure drop in the column is decreases, provided the initial bed height, diameter of the column, and liquid flowrate are constant. This is due to decrease in density of the fluid medium in the bed by means of more gas hold up. The approach of the simulated values to the experimental values can be reduced with better understanding the nature of the fluidized bed.  相似文献   
8.
9.
The hydrodynamic characteristic performance of an internal draft tube inverse fluidized bed biofilm reactor was studied for the aerobic biodegradation of phenol (1,200 mg/l) using Pseudomonas fluorescens for various ratios of settled bed volume to reactor working volume (V b /V r ) under batchwise condition with respect to liquid phase. The operating parameters, such as superficial gas velocity, phase hold ups, aspect ratio and bed height, were analyzed for different ratios of (V b /V r ). The effect of biodegradation on synthetic phenolic effluent was determined from the reduction in chemical oxygen demand and phenol removal efficiency. The optimum value of (V b /V r ) m was 0.20 for the optimal superficial gas velocity, U gm =0.220 m/s with the COD reduction efficiency of 98.5% in 48 hours. The biomass and biofilm characteristics of P. fluorescens were determined for optimal hydrodynamic operating parameters by evaluating its biofilm dry density and thickness, bioparticle density, suspended and attached biomass concentration.  相似文献   
10.
ABSTRACT

In this study, for the first time, polycaprolactone (PCL) nanofiber matrix was bioactivated for the removal of fluoxetine from milk. Bioactivated nanofiber was prepared by immobilizing fluoxetine antibody on PCL nanofiber matrix. The fluoxetine removal efficiency of bioactivated nanofiber in milk was found to be approximately 93.6%. This removal did not significantly change the biochemical composition of milk. In conclusion, as a novel product, bioactivated nanofibrous PCL matrix can be used for the removal of drugs or unwanted chemicals from breast milk or from other fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号