首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   14篇
  国内免费   1篇
工业技术   276篇
  2023年   5篇
  2022年   5篇
  2021年   11篇
  2020年   13篇
  2019年   16篇
  2018年   18篇
  2017年   16篇
  2016年   6篇
  2015年   3篇
  2014年   10篇
  2013年   23篇
  2012年   20篇
  2011年   22篇
  2010年   6篇
  2009年   9篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   11篇
  1991年   1篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1986年   3篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
1.

Most of the commonly used hydrological models do not account for the actual evapotranspiration (ETa) as a key contributor to water loss in semi-arid/arid regions. In this study, the HEC-HMS (Hydrologic Engineering Center Hydrologic Modeling System) model was calibrated, modified, and its performance in simulating runoff resulting from short-duration rainfall events was evaluated. The model modifications included integrating spatially distributed ETa, calculated using the surface energy balance system (SEBS), into the model. Evaluating the model’s performance in simulating runoff showed that the default HEC-HMS model underestimated the runoff with root mean squared error (RMSE) of 0.14 m3/s (R2?=?0.92) while incorporating SEBS ETa into the model reduced RMSE to 0.01 m3/s (R2?=?0.99). The integration of HECHMS and SEBS resulted in smaller and more realistic latent heat flux estimates translated into a lower water loss rate and a higher magnitude of runoff simulated by the HECHMS model. The difference between runoff simulations using the default and modified model translated into an average of 95,000 m3 runoff per rainfall event (equal to seasonal water requirement of ten-hectare winter wheat) that could be planned and triggered for agricultural purposes, flood harvesting, and groundwater recharge in the region. The effect of ETa on the simulated runoff volume is expected to be more pronounced during high evaporative demand periods, longer rainfall events, and larger catchments. The outcome of this study signifies the importance of implementing accurate estimates of evapotranspiration into a hydrological model.

  相似文献   
2.
Theoretical Foundations of Chemical Engineering - Thin dense Pd composite membrane was prepared via electroless plating method. Pd nanoparticles embedded polyethylene glycol (PEG) was used in...  相似文献   
3.
The Nickel base Superalloys are the most famous complicated and useable of Superalloys to make hot zone components of the gas turbines. The complicated dimensional tolerances, specially at the root of the blade show importance of grinding processes at the production of blades root. The prediction of the effect of machining parameters on the soundness of component surface strengthening for reaching to a suitable surface finishing and avoiding from crack formation at the work part during machining operation often is not easy and feasible so needs to more industrial investigation.This research is about frame 5 blade designed by GE and made from Superalloy IN738LC has been investigated. The formation of a plastically deformed and heat affected zone during grinding of Superalloy IN738LC with a high depth of cut but slow work speed (creep feed grinding) was investigated. Parameters such as work speed, depth of cut and radial dressing speed have been considered as variables and their effects have been studied. During experimental performed, the voltage and current of motor measured and power and special energy calculated.Some samples heat-treated (of the 1176℃ for 1 hr under neutral argon gas and cooling rate of 15℃/min up to 537℃ and then air cooling) to study grains recrystallization. Other samples have been created from the roots of blades and then coated by Nickel to measure boundary layer micro-hardness. The results show that increasing work speed leads to increasing the use power. Increasing the depth of cut, by increasing material removal rate, and the radial dressing speed, by decreasing power, lead to decreasing special energy. The temperature created by grinding lead to decreasing plastic deformation and boundary layer formation. When the radial dressing speed changes from 1 to 0.6μm/rev and other parameters are kept unchanged the roughness of surface increases and the special energy decreases. Sufficient dressing is very essential in limiting the width of the molten zone to few micrometers. As a result, it was found that local melting at contact spots to be a rather common mechanism during grinding of superalloys, lead to so-called white layers which can easily be observed on metallographic cross sections.  相似文献   
4.
A model for the computational cost of the finite-difference time-domain (FDTD) method irrespective of implementation details or the application domain is given. The model is used to formalize the problem of optimal distribution of computational load to an arbitrary set of resources across a heterogeneous cluster. We show that the problem can be formulated as a minimax optimization problem and derive analytic lower bounds for the computational cost. The work provides insight into optimal design of FDTD parallel software. Our formulation of the load distribution problem takes simultaneously into account the computational and communication costs. We demonstrate that significant performance gains, as much as 75%, can be achieved by proper load distribution.  相似文献   
5.
Optoelectronic tweezers (OET) are a powerful light-based technique for the manipulation of micro- and nanoscopic particles. In addition to an optically patterned dielectrophoresis (DEP) force, other light-induced electrokinetic and thermal effects occur in the OET device. In this paper, we present a comprehensive theoretical and experimental investigation of various fluidic, optical, and electrical effects present during OET operation. These effects include DEP, light-induced ac electroosmosis, electrothermal flow, and buoyancy-driven flow. We present finite-element modeling of these effects to establish the dominant mode for a given set of device parameters and bias conditions. These results are confirmed experimentally and present a comprehensive outline of the operational regimes of the OET device.  相似文献   
6.
There have been few experience reports from industry on how Model-Driven Engineering (MDE) is applied and what the benefits are. This paper summarizes the experiences of three large industrial participants in a European research project with the objective of developing techniques and tools for applying MDE on the development of large and complex software systems. The participants had varying degrees of previous experience with MDE. They found MDE to be particularly useful for providing abstractions of complex systems at multiple levels or from different viewpoints, for the development of domain-specific models that facilitate communication with non-technical experts, for the purposes of simulation and testing, and for the consumption of models for analysis, such as performance-related decision support and system design improvements. From the industrial perspective, a methodology is considered to be useful and cost-efficient if it is possible to reuse solutions in multiple projects or products. However, developing reusable solutions required extra effort and sometimes had a negative impact on the performance of tools. While the companies identified several benefits of MDE, merging different tools with one another in a seamless development environment required several transformations, which increased the required implementation effort and complexity. Additionally, user-friendliness of tools and the provision of features for managing models of complex systems were identified as crucial for a wider industrial adoption of MDE.  相似文献   
7.
This paper proposes an integrated approach to identify, evaluate and improve the potential failures in a service setting. This integrated approach combines Fuzzy cost‐based service‐specific FMEA (FCS‐FMEA), Grey Relational Analysis (GRA) and profitability theory for better prioritization of the service failures by considering cost as an important issue and using the profitability theory in a way that the corrective actions costs are taken into account. Considering profitability with FCS‐FMEA and GRA reduces the losses caused by failure occurrence. Besides, a maximization linear mathematical problem is used to select the best mix of failures to be repaired. We apply our approach to an academic example concerning the potential failures diagnosis of the Internal Medicine service of a hospital located in Seoul, Korea. We applied our approach and solved the associated maximization problem by a commercial solver, producing an optimal solution which indicates the most convenient mix of failures to be repaired by considering available budget. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
The successful clinical application of bone tissue engineering requires customized implants based on the receiver’s bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.  相似文献   
9.
In the present study, the influences of three different types of carbon (carbon black, graphite, and petroleum coke) on SiC synthesis via mechanical activation and sintering were evaluated. In this regard, the phase components, morphology, and the formation mechanism were investigated. SiC nanoparticles were detected to be formed after 4 h of milling and sintering at 1450°C, regardless of the sources of carbon. The carbon types exert their effects on the morphology of the as‐synthesized particles, where carbon black leads to form rod‐like SiC particles and the other two carbon types result in semi‐spherical SiC particles. This is due to the dominant mechanism in the mentioned process. The rod‐like particles obtained from the carbon black‐containing powder were synthesized via the VSL mechanism, whereas the solid‐state reactions occurred to form the SiC particles in the graphite‐ or petroleum coke‐containing samples. In the VSL mechanism, any increase in the milling time leads to facilitate the SiC formation due to entrance of Fe debris, whereas in the other samples (graphite or petroleum coke) the procedure is reversed.  相似文献   
10.
An analytic solution for the estimation of structural parameters and initial tensile modulus of plain woven fabrics under uniaxial tensile loading in their linear elastic domain of deformation is presented. For this purpose, a new approach in straight line geometry with a parallel segment to the fabric plane and an inclined segment at the weave intersection in 3D form is proposed which leads to the theoretical estimation of all the structural parameters of plain woven fabrics with saw-tooth geometry. Defining and applying of JJ2 Ratio in the model enable us to modify the geometrical model and estimate the value of structural parameters considering the history of samples influenced mainly by its manufacturing process. The strain energy method and Castigliano’s theorem are used for the mechanical analysis of the structure. The elasticity, bending, shearing, and compression rigidity of yarns are incorporated into the model. It has been shown that predicting the geometrical and mechanical parameters of woven fabrics before production are possible if and only if the crimp value of the fabrics can be estimated before their production. The proposed theory is validated and compared by applying into some experimental data and a previous model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号