首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   14篇
  国内免费   1篇
工业技术   163篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   11篇
  2007年   10篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1984年   1篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1975年   3篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
2.
Pixel-selected ray tracing   总被引:1,自引:0,他引:1  
An acceleration method based on an idea that T. Whitted (Commun. ACM, vol.23, no.6 pp.343-349, June 1980) presented on ray tracing is discussed. He proposed making antialiased images by hierarchical adaptive oversampling. The present authors use hierarchical adaptive undersampling to reduce the number of pixels whose intensity must be calculated by ray tracing. To implement pixel-selected ray tracing (PSRT), homogeneous regions in images must first be found. Generally, adaptive undersampling can result in some image-quality defects, because small objects and parts of thin or wedge-shaped objects may disappear when they are located between the initially sampled pixels. PSRT has an improved algorithm that uses pixels with the correct object information from among the sampled pixels to find pixels with erroneous color and correct them. Moreover, PRST uses ray-object intersection trees for precise classification of the homogeneity of regions and for fast intensity calculation in homogeneous regions. Experimental results are presented. They show that PSRT is two to nine times faster than standard ray tracing  相似文献   
3.
Wetting and brazing studies of sputtering-deposited, submicrometer thin film filler metal in an Ag—Cu—Ti/Al2O3 system were performed. The interfacial reaction layer between the filler metal and Al2O3 was investigated. It is possible to make a brazing joint even with a reaction layer of less than 100 nm thickness. Different types of interfacial reaction layers were observed when the Ti content in the filler metal was varied. The Cu—Ti—O system compounds were observed in the samples with high wetting capabilities, but not in the sample with low wetting characteristics. It was found that these compounds are substances that promote effective brazing.  相似文献   
4.
Vanadium oxide spread highly on TiO2 (anatase, A) and SnO2, and rather densely on TiO2 (rutile, R) and ZrO2 to make the monolayer in less than 4–5 V nm−2. Profile of acid site of the monolayer was measured by temperature programmed desorption of ammonia, and its relation with the surface oxidation state was studied. The acid site density was high on the V2O5/TiO2 (A) independent of the degree of oxidation. On the other hand, that of V2O5/TiO2 (R) and V2O5/ZrO2 depended on the oxidation state, and the high value of the concentration was observed on the oxidized one. The strength of acid site generated on the V2O5 monolayer on TiO2 was as high as on the HZSM-5 zeolite. Turnover frequency (TOF) of propane conversion, and product selectivity were measured in propane oxidation. Among tested oxides, the V2O5/TiO2 (A) showed the high TOF and selectivity to form propylene, while those loaded on TiO2 (R) and ZrO2 the small TOF and poor selectivity. Therefore, the reaction profile of activity and selectivity could be related with the extent of spreading and solid acidity. An idea of limit of the acid site density ca. 1.5 nm−2 on the monolayer was elucidated.  相似文献   
5.
6.
In recent years, heterostructures formed in transition metal dichalcogenides (TMDs) have attracted significant attention due to their unique physical properties beyond the individual components. Atomically thin TMD heterostructures, such as MoS2‐WS2, MoS2‐MoSe2, MoS2‐WSe2, and WSe2‐WS2, are synthesized so far via chemical vapor deposition (CVD) method. Engineering the morphology of domains including size and shape, however, still remains challenging. Here, a one‐step CVD strategy on the morphology engineering of MoS2 and WS2 domains within the monolayer MoS2‐WS2 lateral heterostructures through controlling the weight ratio of precursors, MoO3 and WO3, as well as tuning the reaction temperature is reported. Not only can the size ratio in terms of area between WS2 and MoS2 domains be easily controlled from less than 1 to more than 20, but also the overall heterostructure size can be tuned from several to hundreds of micrometers. Intriguingly, the quantum well structure, a WS2 stripe embedded in the MoS2 matrix, is also observed in the as‐synthesized heterostructures, offering opportunities to study quantum confinement effects and quantum well applications. This approach paves the way for the large‐scale fabrication of MoS2‐WS2 lateral heterostructures with controllable domain morphology, and shall be readily extended to morphology engineering of other TMD heterostructures.  相似文献   
7.
8.
9.
Conventional methods to prepare large‐area graphene for transparent conducting electrodes involve the wet etching of the metal catalyst and the transfer of the graphene film, which can degrade the film through the creation of wrinkles, cracks, or tears. The resulting films may also be obscured by residual metal impurities and polymer contaminants. Here, it is shown that direct growth of large‐area flat nanographene films on silica can be achieved at low temperature (400 °C) by chemical vapor deposition without the use of metal catalysts. Raman spectroscopy and TEM confirm the formation of a hexagonal atomic network of sp2‐bonded carbon with a domain size of about 3–5 nm. Further spectroscopic analysis reveals the formation of SiC between the nanographene and SiO2, indicating that SiC acts as a catalyst. The optical transmittance of the graphene films is comparable with transferred CVD graphene grown on Cu foils. Despite the fact that the electrical conductivity is an order of magnitude lower than CVD graphene grown on metals, the sheet resistance remains 1–2 orders of magnitude better than well‐reduced graphene oxides.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号