首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
工业技术   9篇
  2020年   1篇
  2016年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
2.
Shi  Enzheng  Cui  Shuang  Kempf  Nicholas  Xing  Qingfeng  Chasapis  Thomas  Zhu  Huazhang  Li  Zhe  Bahk  Je-Hyeong  Snyder  G. Jeffrey  Zhang  Yanliang  Chen  Renkun  Wu  Yue 《Nano Research》2020,13(5):1339-1346

Anisotropy and inhomogeneity are ubiquitous in spark plasma sintered thermoelectric devices. However, the origin of inhomogeneity in thermoelectric nanocomposites has rarely been investigated so far. Herein, we systematically study the impact of inhomogeneity in spark plasma sintered bismuth antimony telluride (BiSbTe) thermoelectric nanocomposites fabricated from solution-synthesized nanoplates. The figure of merit can reach 1.18, which, however, can be overestimated to 1.88 without considering the inhomogeneity. Our study reveals that the inhomogeneity in thermoelectric properties is attributed to the non-uniformity of porosity, textures and elemental distribution from electron backscatter diffraction and energy-dispersive spectroscopy characterizations. This finding suggests that the optimization of bulk material homogeneity should also be actively pursued in any future thermoelectric material research.

  相似文献   
3.
We present theoretically that the cross-plane Seebeck coefficient of InGaAs/InGaAlAs III?CV semiconductor superlattices can be significantly enhanced through miniband transport at low temperatures. The miniband dispersion curves are calculated by self-consistently solving the Schr?dinger equation with the periodic potential, and the Poisson equation taking into account the charge transfer between the two layers. Boltzmann transport in the relaxation-time approximation is used to calculate the thermoelectric transport properties in the cross-plane direction based on the modified density of states and group velocity. It is found that the cross-plane Seebeck coefficient can be enhanced more than 60% over the bulk values at an equivalent doping level at 80?K when the Fermi level is aligned at an edge of the minibands. Other thermoelectric transport properties are also calculated and discussed to further enhance the thermoelectric power factor.  相似文献   
4.
5.
Recent experimental results have shown that adding nanoparticles inside a bulk material can enhance the thermoelectric performance by reducing the thermal conductivity and increasing the Seebeck coefficient. In this paper we investigate electron scattering from nanoparticles using different models. We compare the results of the Born approximation to that of the partial-wave method for a single nanoparticle scattering. The partial-wave method is more accurate for particle sizes in the 1 nm to 5 nm range where the point scattering approximation is not valid. The two methods can have different predictions for the thermoelectric properties such as the electrical conductivity and the Seebeck coefficient. To include a random distribution of nanoparticles, we consider an effective medium for the electron scattering using the coherent potential approximation. We compare various theoretical results with the experimental data obtained with ErAs nanoparticles in an InGaAlAs matrix. Reasonably good agreement is found between the measured and theoretical electrical conductivity and Seebeck data in the 300 K to 850 K temperature range.  相似文献   
6.
7.
We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hotpressed into bulk pellets. A third element, Se, is introduced to tune the carrier concentration of the nanocomposites. Due to the Se doping, the thermoelectric figure of merit (ZT) of the nanocomposites is significantly enhanced due to the increased power factor and reduced thermal conductivity. We also find that thermal transport in our hot-pressed pellets is anisotropic, which results in different thermal conductivities along the in-plane and cross-plane directions. Theoretical calculations for both electronic and thermal transport are carried out to establish fundamental understanding of the material system and provide directions for further ZT optimization with adjustments to carrier concentration and mobility.
  相似文献   
8.
The thermoelectric properties of ErAs:InGaAlAs were characterized by variable-temperature measurements of thermal conductivity, electrical conductivity, and Seebeck coefficient from 300 K to 600 K, which shows that the ZT(, where and T are the Seebeck coefficient, electrical conductivity, thermal conductivity, and absolute temperature, respectively) of the material is greater than 1 at 600 K. Power generator modules of segmented elements of 300 μm Bi2Te3 and 50 μm thickness ErAs:(InGaAs)1−x (InAlAs) x were fabricated and characterized. The segmented element is 1 mm × 1 mm in area, and each segment can work at different temperature ranges. An output power up to 5.5 W and an open-circuit voltage over 10 V were measured. Theoretical calculations were carried out and the results indicate that the performance of the thermoelectric generator modules can be improved further by improving the thermoelectric properties of the element material, and reducing the electrical and thermal parasitic losses.  相似文献   
9.
In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:In(x)Ga(1?x)Sb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By co-doping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μ m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号