首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22446篇
  免费   1780篇
  国内免费   880篇
工业技术   25106篇
  2024年   69篇
  2023年   334篇
  2022年   514篇
  2021年   778篇
  2020年   619篇
  2019年   461篇
  2018年   597篇
  2017年   654篇
  2016年   578篇
  2015年   806篇
  2014年   970篇
  2013年   1263篇
  2012年   1314篇
  2011年   1479篇
  2010年   1275篇
  2009年   1196篇
  2008年   1255篇
  2007年   1129篇
  2006年   1262篇
  2005年   1207篇
  2004年   770篇
  2003年   730篇
  2002年   722篇
  2001年   630篇
  2000年   598篇
  1999年   745篇
  1998年   559篇
  1997年   530篇
  1996年   439篇
  1995年   359篇
  1994年   318篇
  1993年   206篇
  1992年   189篇
  1991年   138篇
  1990年   115篇
  1989年   91篇
  1988年   76篇
  1987年   36篇
  1986年   26篇
  1985年   23篇
  1984年   15篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
1.
2.
Over recent years,catalytic materials of Fe-N-C species have been recognized being active for oxygen reduction reaction(ORR).However,the identification of active site remains challenging as it generally involves a pyrolysis process and mixed components being obtained.Herein Fe3C/C and Fe2N/C samples were synthesized by temperature programmed reduction of Fe precursors in 15%CH4/H2and pure NH3,respectively.By acid leaching of Fe2N/C sample,only single sites of FeN4species were presented,providing an ideal model for identification of catalytic functions of the single sites of FeN4in ORR.A correlation was conducted between the concentration of FeN4in low spin state by Mossbauer spectra and the kinetic current density at 0.8 V in alkaline media,and such a structure-performance correlation assures the catalytic roles of low spin FeN4 species as highly active sites for the ORR.  相似文献   
3.
Nitrile rubber (NBR) blends with excellent performance have always been a hot research topic in petroleum field. Due to the excellent performance and compatibility of polyamide 6 (PA6), it provides an opportunity for the preparation of high-performance NBR/PA6 blends. In this article, NBR/PA6 blends were prepared by the three-step molding process. Experimentally, it was found that PA6 has a prominent reinforcement effect in NBR matrix. The variation of this mechanical property was investigated from different aspects of the crystal structure, crystallinities, phase morphology, and so on. It can be cleared that the formation of fibrous structure of PA6 phase is the main factor for reinforcement of the polymer blends. Meanwhile, the formation mechanism of the special phase structure induced by the three-step process is deeply expounded and its structural evolution schematic is established. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47472.  相似文献   
4.
5.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   
6.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
7.
8.
Global decrease in crude oil resources and frequent crude oil leaks cause the energy crisis and ecological pollution. The absorption and release of leaked crude oil through absorption materials are a necessary process for environmental protection and recycling. In this article, a CO2-responsive olefin copolymer was obtained by copolymerization of styrene and an amine-containing olefin monomer. The structure of resultant copolymer was characterized by FTIR; thermal properties and CO2-responsive morphology changes were determined by DSC/TGA and SEM, respectively. Copolymers had certain absorption capacity for toluene with absorption rate up to 180.0%. The absorbed toluene could be released upon CO2 stimulation with desorption rate up to 84.6%. The CO2-responsive copolymer could be regenerated through a simple heating process and showed stable absorption–desorption performance even after being recycled for 4 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47439.  相似文献   
9.
酸碱反应无论是在无机化学还是有机化学中,都占有极高的地位,文章以综述的形式讨论酸碱理论及其在一些重要的有机反应中应用研究。  相似文献   
10.
Malic acid derived from fossil resources is currently applied in the food and beverage industries with a medium global production capacity. However, in the transition from a fossil-based to a bio-based economy, biotechnologically produced l -malic acid may become an important platform chemical with many new applications, especially in the field of biopolymers. In this review, currently used petrochemical production routes to dl -malic acid are outlined and insights into possible bio-based alternatives for microbial l -malic acid production are provided. Besides ecological reasons, the possibility to produce enantiopure l -malic acid by microbial fermentation is the biggest advantage over chemical synthesis. State-of-the-art and open challenges concerning production host engineering, substrate choice and downstream processing are addressed. With regard to production hosts, a literature overview is given covering the leading natural production strains of Aspergillus, Ustilago and Aureobasidium, as well as Escherichia coli as the most important engineered recombinant host. The utilization of renewable substrates as an alternative to glucose is emphasized in particular as a key aspect for a competitive bio-based production. Out of the alternative substrates discussed in this review, the industrial side-streams crude glycerol and molasses seem to be most promising for large-scale l -malic acid production. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号