首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   6篇
  国内免费   1篇
工业技术   159篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2012年   6篇
  2011年   14篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1963年   2篇
  1962年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
Non-muscle-invasive bladder cancer is the most common form of bladder cancer. The main problem in managing bladder tumors is the high recurrence after the transurethral resection of bladder tumors (TURBT). Our study aimed to examine the fate of intravesically applied cancer cells as the implantation of cancer cells after TURBT is thought to be a cause of tumor recurrence. We established an orthotopic mouse bladder tumor model with MB49-GFP cancer cells and traced them during the first three days to define their location and contacts with normal urothelial cells. Data were obtained by Western blot, immunolabeling, and light and electron microscopy. We showed that within the first two hours, applied cancer cells adhered to the traumatized epithelium by cell projections containing α3β1 integrin on their tips. Cancer cells then migrated through the epithelium and on day 3, they reached the basal lamina or even penetrated it. In established bladder tumors, E-cadherin and desmoplakin 1/2 were shown as feasible immunohistochemical markers of tumor margins based on the immunolabeling of various junctional proteins. Altogether, these results for the first time illustrate cancer cell implantation in vivo mimicking cellular events of tumor recurrence in bladder cancer patients.  相似文献   
2.
Electrospinning of polyurethane fibers   总被引:5,自引:0,他引:5  
A segmented polyurethaneurea based on poly(tetramethylene oxide)glycol, a cycloaliphatic diisocyanate and an unsymmetrical diamine were prepared. Urea content of the copolymer was 35 wt%. Electrospinning behavior of this elastomeric polyurethaneurea copolymer in solution was studied. The effects of electrical field, temperature, conductivity and viscosity of the solution on the electrospinning process and morphology and property of the fibers obtained were investigated. Results of observations made by optical microscope, atomic force microscope and scanning electron microscope were interpreted and compared with literature data available on the electrospinning behavior of other polymeric systems.  相似文献   
3.
Surface reconstruction for incremental forming   总被引:1,自引:0,他引:1  
In spite of extensive efforts being made with regard to virtual process optimization technology, the production of prototype parts is still a necessity. With respect to the production of sheet metal parts in low quantities, incremental sheet metal forming (ISMF) is a highly interesting process. ISMF allows the production of complex parts with drastically reduced costs in tooling and machinery compared to conventional processes like deep drawing. However, ISMF, with it’s incremental nature, introduces the need for generating a tool path considering both final geometry and process-induced deviations or constraints. Consequently, for the generation of the tool path a (tool path) surface, with an adequate offset, is necessary. That is why, within the scope of extensive research work at the Institute of Forming Technology and Lightweight Construction (IUL), a special correction module has been developed, determining this offset e.g. depending on the workpiece geometry. This paper presents the algorithm, the application, and the effect on the produced parts. Furthermore, a concept for an extension regarding further constraints like elastic workpiece behavior is presented.  相似文献   
4.
Bengu E  Marks LD  Ovali RV  Gulseren O 《Ultramicroscopy》2008,108(11):1484-1489
Cubic boron nitride (c-BN) nucleation takes place on hexagonal boron nitride (h-BN) layers growing perpendicular to the substrate surface during thin film synthesis. Studies focused on the nucleation of the cubic phase suggest the possibility that transient phases and/or defects on these h-BN structures have a role in sp3-bonded cubic phase nucleation. In this study, we have investigated the nature, energetics, and structure of several possible defects on BN basal planes, including point defects, 4-, and 5-fold BN rings, that may possibly match the experimentally observed transient phase fine structure. TEM image observations are used to build approximate atomic models for the proposed structures, and DFT calculations are used to relax these structures while minimizing their respective total energies. These optimized atomic geometries are then used to simulate TEM images, which are compared to the experimentally observed structures. Data from DFT calculations and analysis of simulated images from the proposed atomic structures suggest that 4-fold BN rings are more likely to exist on the transient phase possibly leading to c-BN nucleation.  相似文献   
5.
Therapy with mesenchymal stem cells (MSCs) is promising in many diseases. Evaluation of their efficacy depends on adequate follow-up of MSCs after transplantation. Several studies have shown that MSCs can be labeled and subsequently visualized with magnetic nanoparticles (NPs). We investigated the homing of MSCs labeled with magnetic cobalt ferrite NPs in experimentally induced acute kidney injury in mice. To explore the homing of MSCs after systemic infusion into mice, we developed a pre-infusion strategy for optimal tracing and identification of MSCs with polyacrylic acid-coated cobalt ferrite (CoFe2O4) NPs by light and transmission electron microscopy (TEM) in various organs of mice with cisplatin-induced acute kidney injury and control mice. By correlative microscopy, we detected MSCs labeled with NPs in the lungs, spleen, kidney, and intestine of cisplatin-treated mice and in the lungs and spleen of control mice. Our results confirm that labeling MSCs with metal NPs did not affect the ultrastructure of MSCs and their ability to settle in various organs. This study demonstrates the usefulness of cobalt ferrite NPs in ex vivo visualization of MSCs and offers correlative microscopy as a useful method in routine histopathology laboratories for tracing MSCs in paraffin-embedded tissue.  相似文献   
6.
7.
Carbonization and activation have been exploited as an economic and efficient approach toward the production of porous activated carbon monolith derived from green stem of cassava (GSC). In addition, ZnCl2 was used as a chemical activator agent at various concentrations, therefore serving as a key factor in the development of porous carbon. The carbonization process (N2) was integrated with physical activation (CO2), and then N2 sorption, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray were examined to evaluate the specific surface area, pore structure characteristic, morphology structure, crystallinity, and the surface element, respectively. Furthermore, cyclic voltammetry was used to measure the electrochemical performance, through a two-electrode system in 1M H2SO4. Therefore, the synthesized porous activated carbon exhibits a micropores-mesopores combination, and the optimized sample demonstrated nanosheet and nanofiber structures. The results show a high electrochemical behavior in 1M H2SO4 electrolytes, by the electrodes, with specific capacitance, energy, and power densities of 164.58 F g−1, 22.86 Wh kg−1, and 82.38 W kg−1, respectively. This route confirms the opportunity of using novel GSC in the production of porous carbon monolith with nanosheet/nanofiber structure for supercapacitor applications.  相似文献   
8.
9.
Computational models of protein folding and ligand docking are large and complex. Few systematic methods have yet been developed to optimize the parameters in such models. We describe here an iterative parameter optimization strategy that is based on minimizing a structural error measure by descent in parameter space. At the start, we know the ‘correct’ native structure that we want the model to produce, and an initial set of parameters representing the relative strengths of interactions between the amino acids. The parameters are changed systematically until the model native structure converges as closely as possible to the correct native structure. As a test, we apply this parameter optimization method to the recently developed Gaussian model of protein folding: each amino acid is represented as a bead and all bonds, covalent and noncovalent, are represented by Hooke's law springs. We show that even though the Gaussian model has continuous degrees of freedom, parameters can be chosen to cause its ground state to be identical to that of Go-type lattice models, for which the global ground states are known. Parameters for a more realistic protein model can also be obtained to produce structures close to the real native structures in the protein database.  相似文献   
10.
Summary Poly(-3-hydroxy alkanoate) containing unsaturated side chains, PHA-soybean, were produced by feeding Pseudomonas oleovorans with soybean oily acids obtained from soybean oil. Unsaturation of PHA-soybean were found to be 10 mol-% of unsaturated side chains. Main saturated part of the biopolymer was Poly(3-hydroxy octanoate) with minor hexanoate and decanoate units. PHA films were crosslinked via free radical mechanism by means of thermally or under UV irradiation in the presence of benzoyl peroxide, benzophenon, and /or ethylene glycol dimethacrylate (EGDM). Crosslinking yield of the PHA films were found to be from 81 to 93 wt.-% from the sol-gel analysis. Swelling properties of the crosslinked PHA films in chloroform and toluene were also studied. Mc values of crosslinked PHAs were also calculated using Flory-Rehner equation. The crosslinked biopolyester obtained by thermally at 60 °C with benzoyl peroxide indicated the highest crosslinking density. Glass transition temperatures (Tg) of crosslinked biopolyester samples were changed from −33 to −45 °C while that of PHA-soybean was −60 °C. Received: 16 June 2000/Revised version: 22 January 2001/Accepted: 20 May 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号