首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  国内免费   1篇
工业技术   95篇
  2024年   3篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   13篇
  2013年   6篇
  2012年   3篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   9篇
  1966年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
基于国内外对硫酸盐腐蚀环境下纤维沥青混合料的低温抗裂性鲜有研究的现状,采用干湿循环作用下不同浓度(5%、10%)Na2SO4溶液加速劣化试验,研究了水镁石纤维沥青混合料在Na2SO4腐蚀介质中的低温抗裂性变化规律,并与聚酯纤维和玄武岩纤维沥青混合料进行对比;探索了沥青混合料硫酸盐腐蚀损伤机理及纤维在混合料中的阻裂作用。研究结果表明:与纯净水环境相比,沥青混合料在盐蚀环境下的低温抗裂性能劣化程度更为严重;Na2SO4溶液渗入沥青混合料空隙和裂缝中发生的结晶型侵蚀是导致沥青混合料低温抗裂性劣化的主要诱因;水镁石纤维具有优良的增强增韧效应,可以有效提高沥青混合料在硫酸盐腐蚀环境下的低温抗裂性。研究成果可为硫酸盐富集地区沥青混合料材料组成设计提供参考。  相似文献   
2.
针对不同沥青与矿粉组成的3种高粘沥青胶浆抗剪性能进行研究,分析锥重、材料组成、温度、粉胶比等对高粘沥青胶浆抗剪性能的影响。结果表明,锥重对沥青胶浆抗剪强度影响很小。随着温度升高,沥青胶浆抗剪强度下降,在25~35℃之间,且当粉胶比大于1.2时,抗剪强度变化趋势显著加快。同种沥青胶浆,随着粉胶比增大其抗剪强度增大,但抗剪强度随温度敏感性先减小后增大,粉胶比为1.2时沥青胶浆抗剪性能温度稳定性最好。与矿粉类型相比,沥青性质对胶浆抗剪强度及其温度敏感性影响更为显著。  相似文献   
3.
The corrosion to asphalt mixture under different kinds of corrosion solution, such as pH=2 solution, pH=12 solution, pH = 12 solution and 10% Na2SO4 solution, was studied. The performance attenuation of asphalt mixture was analyzed under the normal environment and the freeze-thaw environment, and the analysis was given on the sensitivity of the test results to the evaluation index. The experimental results show that the performance of asphalt mixture is attenuated faster under the acidic solution, alkaline solution and sulfate solution. Corrosion factor K c, freeze-thaw corrosion factor K f, and freeze-thaw effect factor K fc are proposed to evaluate asphalt mixture resistance to corrosion in different kinds of corrosion solution. The values of K c and K fc decrease with the increasing of corrosion time. The change rule of K f show that the rate of corrosion is decreased by the action of freeze-thaw in acidic solution and in alkaline solution, but is increased by the action of freeze-thaw in sulfate solution. The microscopic analysis indicates that acid solution reacts with aggregate of asphalt mixture, alkaline solution reacts with asphalt cement of asphalt mixture, the surface tension of sulfate solution and crystallization of sulfate are the main reasons which weak the performance of asphalt mixture.  相似文献   
4.
安宁  关博文  张旖伦  高健  温冠宇  董雪  马磊  范存波 《红外与激光工程》2021,50(8):20200408-1-20200408-9
数据处理技术的发展与进步是实现毫米级卫星激光测距(Satellite Laser Ranging,SLR)的重要保障。文中简要回顾了SLR技术的发展历程,阐述了数据处理技术在SLR的实际应用,着重介绍了国内外典型的数据处理算法及其发展脉络。同时,针对大地测量产品的应用需求,分析了目前SLR数据处理算法的适用性、稳定性及存在的问题。最后,针对激光测距的未来发展态势,提出了新一代SLR数据处理方法面临的挑战及可能的解决方案,并对其发展趋势做出展望。  相似文献   
5.
基于激光雷达方程和天空背景噪声估算公式推导出近红外空间碎片激光测距探测成功概率的计算公式,仿真研究了该公式中大气透过率和天空背景噪声的影响因素,经数据拟合,得到空间碎片激光测距探测成功概率的归一化表达式。在此基础上,仿真分析了太阳高度角、目标天顶角、目标轨道距离和目标横截面积对目标探测成功概率的影响。结果表明:目标探测成功概率随太阳高度角升高而减小,随目标轨道距离的增加而减小,随目标天顶角的增大而减小,当目标天顶角增加到70°时,目标探测成功概率开始急剧下降;目标轨道距离固定的情况下,目标探测成功概率随目标横截面积的增大而增大。该研究对提高空间碎片的观测效率具有一定的应用价值。  相似文献   
6.
钢筋混凝土常作为负荷结构用于道路、桥梁、隧道等工程中,然而由于氯离子的侵蚀,导致混凝土过早劣化。在实际环境中,混凝土构件在遭受氯离子侵蚀时,常要受到荷载和环境因素的影响。基于此,总结了近年来国内外荷载(持续荷载、疲劳荷载)和环境因素(干湿循环、冻融循环、碳化、其他腐蚀介质)共同作用下混凝土氯离子渗透性的研究进展,并评述了他们研究中存在的问题及不足,为今后的进一步研究提出一些建议。  相似文献   
7.
关博文  杨涛  於德美  张纪阳  马慧  谢超 《材料导报》2016,30(20):152-157
在已有水泥混凝土氯离子侵蚀模型基础上,综合考虑外部环境因素(温度、湿度、风速)与混凝土自身条件(龄期、氯离子吸附效应)对非饱和混凝土氯离子侵蚀的影响,建立干湿循环下混凝土氯离子传输模型并进行实验验证。根据运算的复杂程度对Fib Model Code模型进行优化,建立干湿循环作用下钢筋混凝土寿命预测模型,可为实际工况下受氯离子侵蚀钢筋混凝土材料设计与寿命预估提供参考。  相似文献   
8.
国内外对MiberⅠ型矿物复合纤维沥青混合料的性能尚未有研究。鉴于此,采用车辙试验、低温弯曲试验和冻融劈裂试验研究了MiberⅠ型矿物复合纤维沥青混合料的高温稳定性、低温抗裂性和水稳定性,并与木质素纤维沥青混合料和玄武岩纤维沥青混合料的路用性能进行对比。结果表明:掺入适量MiberⅠ型矿物复合纤维可有效提高沥青混合料的路用性能;与木质素纤维和玄武岩纤维相比,MiberⅠ型矿物复合纤维在改善沥青混合料性能方面具有一定优越性;可为MiberⅠ型矿物复合纤维在沥青混合料中的应用提供依据。  相似文献   
9.
通过引入VMA*,借鉴贝雷法的骨架思想,结合体积法的填充原则,提出基于VMA*的排水路面沥青混合料矿料组成设计方法。针对基于VMA*设计的排水沥青混合料矿料组成特点,提出贝雷法三参数级配评价中CA值的修正公式及其参数FAc和FAf范围。计算及验证结果表明,基于VMA*的矿料组成设计方法适合排水路面沥青混合料矿料组成设计,修正后的贝雷法三参数级配评价法适用于评价排水沥青混合料,其参数FAc和FAf范围应为0.5~0.8。  相似文献   
10.
盐蚀环境对沥青路面耐久性的劣化作用具有普遍性和直接性.采用掺盐加速侵蚀试验,以针入度、软化点、延度、布氏黏度与抗剪强度等为评价指标,研究不同种类盐分对沥青性能影响规律;借助SEM和红外光谱微观分析手段,探讨盐分劣化沥青性能作用机理.结果表明,在较短盐蚀龄期内,内掺氯盐与硫酸盐使沥青胶结料呈硬化趋势,而内掺醋酸盐则呈软化趋势;盐分-沥青界面以物理作用为主.研究成果可为富盐地区沥青混合料材料组成设计提供有益参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号