首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
工业技术   8篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2006年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.

We perceive big data with massive datasets of complex and variegated structures in the modern era. Such attributes formulate hindrances while analyzing and storing the data to generate apt aftermaths. Privacy and security are the colossal perturb in the domain space of extensive data analysis. In this paper, our foremost priority is the computing technologies that focus on big data, IoT (Internet of Things), Cloud Computing, Blockchain, and fog computing. Among these, Cloud Computing follows the role of providing on-demand services to their customers by optimizing the cost factor. AWS, Azure, Google Cloud are the major cloud providers today. Fog computing offers new insights into the extension of cloud computing systems by procuring services to the edges of the network. In collaboration with multiple technologies, the Internet of Things takes this into effect, which solves the labyrinth of dealing with advanced services considering its significance in varied application domains. The Blockchain is a dataset that entertains many applications ranging from the fields of crypto-currency to smart contracts. The prospect of this research paper is to present the critical analysis and review it under the umbrella of existing extensive data systems. In this paper, we attend to critics' reviews and address the existing threats to the security of extensive data systems. Moreover, we scrutinize the security attacks on computing systems based upon Cloud, Blockchain, IoT, and fog. This paper lucidly illustrates the different threat behaviour and their impacts on complementary computational technologies. The authors have mooted a precise analysis of cloud-based technologies and discussed their defense mechanism and the security issues of mobile healthcare.

  相似文献   
2.
3.
4.
5.
The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.  相似文献   
6.
This article investigates the development and online implementation of the power switch open-circuit fault detection and diagnosis in symmetric cascaded H-bridge multilevel inverter. A mathematical modelling technique is presented to understand the effect of the fault on the bridge voltages and output voltage. The modelled values of the output voltage, simulation results and experimental results indicate that the fault diagnostic methods based on the output voltage as the diagnostic feature have certain ambiguity in identifying the fault switch, since the output voltage waveform and its features remain the same for a group of switches under the fault condition. In order to overcome this, fault detection and diagnosis method based on the mean values of the bridge voltages is proposed in this article, which identifies the faulty switch pair and H-bridge in which the fault has occurred. Further, this method has been experimentally validated on a five-level space vector modulated symmetric cascaded H-bridge multilevel inverter.  相似文献   
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号