首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   0篇
工业技术   182篇
  2012年   4篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   12篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   11篇
  1999年   4篇
  1998年   16篇
  1997年   13篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1983年   2篇
  1982年   3篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
Dry etching of InGaP, AlInP, and AlGaP in inductively coupled plasmas (ICP) is reported as a function of plasma chemistry (BCl3 or Cl2, with additives of Ar, N2, or H2), source power, radio frequency chuck power, and pressure. Smooth anisotropic pattern transfer at peak etch rates of 1000–2000Å·min?1 is obtained at low DC self-biases (?100V dc) and pressures (2 mTorr). The etch mechanism is characterized by a trade-off between supplying sufficient active chloride species to the surface to produce a strong chemical enhancement of the etch rate, and the efficient removal of the chlorinated etch products before a thick selvedge layer is formed. Cl2 produces smooth surfaces over a wider range of conditions than does BCl3.  相似文献   
2.
Lightly p-doped (3×1017 cm-3) GaN grown on GaAs substrates by metal organic molecular beam epitaxy (MOMBE) shows deactivation of the residual acceptors on exposure to a microwave (2.45 GHz) hydrogen plasma at 250°C. Subsequent annealing to 350°C produces further dopant passivation, while higher temperatures (450°C) restore the initial conductivity. These results suggest that hydrogen carrier gases should be avoided during vapour phase growth of III-V nitrides  相似文献   
3.
The ion energy during electron cyclotron resonance (ECR) plasma hydrogenation is found to have a strong effect on both the effective diffusivity and solubility of hydrogen in n+ and p+ GaAs. For fixed plasma exposure conditions (30 min, 250°C) the diffusion depths for -150 V acceleration voltage are ~50 and ~100% larger, respectively, in p+- and n+-GaAs compared to 0 V acceleration voltage. The smaller incorporation depths at lower ion energy coincide with much larger peak hydrogen concentrations and higher apparent thermal stability of passivated dopants  相似文献   
4.
High-power 980-nm AlGaAs/InGaAs strained quantum-well laser grown by OMVPE   总被引:1,自引:0,他引:1  
High-power lattice-strained AlGaAs/InGaAs graded index separate-confinement heterostructure (GRINSCH) quantum-well lasers emitting at a 980-nm wavelength have been grown by organometallic vapor phase epitaxy (OMVPE) and fabricated with a self-aligned ridge-waveguide structure. Using a 3- mu m-wide and 750- mu m-long AR-HR coated laser, 30 mV of optical power was coupled into optical fibers with 28.6% efficiency. A dominating single-lobe far-field radiation pattern was obtained from a wedge-shaped ridge-waveguide laser for output power as high as 240 mW with a maximum output power of 310 mW.<>  相似文献   
5.
High concentrations (0.1–5 at.%) of Mn or Fe were introduced into the near-surface region (≤2000 Å) of 6H-SiC substrates by direct implantation at ~300°C. After annealing at temperatures up to 1000°C, the structural properties were examined by transmission electron microscopy (TEM) and selected-area diffraction pattern (SADP) analysis. The magnetic properties were examined by SQUID magnetometry. While the Mn-implanted samples were paramagnetic over the entire dose range investigated, the Fe-implanted material displayed a ferromagnetic contribution present at <175 K for the highest dose conditions. No secondary phases were detected, at least not to the sensitivity of TEM or SADP.  相似文献   
6.
Wet etch rates at 25°C for Zn0.9Mg0.1O grown on sapphire substrates by pulsed laser deposition (PLD) were in the range 300–1100 nm · min−1 with HCl/H2O (5×10−3−2×10−2 M) and 120–300 nm · min−1 with H3PO4/H2O (5×10−3−2×10−2 M). Both of these dilute mixtures exhibited diffusion-limited etching, with thermal activation energies of 2–3 kCal · mol−1. By sharp contrast, the etch rates for ZnO also grown on sapphire by PLD were much slower in similar solutions, with rates of 1.2–50 nm · min−1 in HCl/H2O (0.01–1.2 M) and 12–54 nm · min−1 in H3PO4/H2O (0.02–0.15 M). The etching was reaction limited over the temperature range 25–75°C, with activation energies close to 6 kCal · mol−1. The resulting selectivity of Zn0.9Mg0.1O over ZnO can be a high as ∼400 with HCl and ∼30 with H3PO4.  相似文献   
7.
Process technology of high-speed implant-apertured index-guide lateral-current-injection top dielectric-mirror quantum-well 850-nm vertical cavity surface-emitting lasers (VCSELs) has been developed. Oxygen and helium implantation for aperture definition and extrinsic capacitance reduction, dielectric mirror formation, p- and n-ohmic contact formation, VCSEL resistance, and thermal analysis were investigated. Employing this technology, GaAs/AlGaAs-based 850-nm VCSELs with small signal modulation bandwidths up to 11.5 Gb/s and an eye diagram generated at 12 Gb/s by a pseudorandom bit sequence of 2/sup 31/-1 were achieved. The bit-error rates were below 10/sup -13/. The threshold current is as low as 0.8 mA for 7-/spl mu/m-diameter current apertures and typical slope efficiencies of 0.45-0.5 mA/mW were obtained.  相似文献   
8.
The low temperature (100°C) deposition of Sc2O3 or MgO layers is found to significantly increase the output power of AlGaN/GaN HEMTs. At 4 GHz, there was a better than 3 dB increase in output power of 0.5×100 μm2 HEMTs for both types of oxide passivation layers. Both Sc2 O3 and MgO produced larger output power increases at 4 GHz than conventional plasma-enhanced chemical vapor deposited (PECVD) SiNx passivation which typically showed ⩽2 dB increase on the same types of devices. The HEMT gain also in general remained linear over a wider input power range with the Sc2O3 or MgO passivation. These films appear promising for reducing the effects of surface states on the DC and RF performance of AlGaN/GaN HEMTs  相似文献   
9.
A review is given of dry etching of III-V semiconductors. Gas chemistries based on chlorine have traditionally been used for plasma etching of these materials due to the volatilities of both group III and group V chlorides. Recent work on the use of iodine- or bromine-based discharges has shown promising results, although the corrosiveness of the feedstock gases is of concern. For indium-containing III-V semiconductors, CH4/H2 plasmas have produced smooth anisotropic etching at relatively low rates. In applications requiring etch rates near 1 m min–1, Cl2/CH4/H2 electron cyclotron resonance discharges have proved effective. Examples are given of the structural and chemical changes induced in the semiconductor as a result of dry etching, due to the combined effects of energetic ion bombardment and preferential removal of one of the lattice constituents. Applications for dry etching in modern microelectronic fabrication range from shallow (30 nm) mesa formation to creation of through-wafer via holes typically 100 m deep.  相似文献   
10.
Design of edge termination for GaN power Schottky diodes   总被引:1,自引:0,他引:1  
The GaN Schottky diodes capable of operating in the 300–700-V range with low turn-on voltage (0.7 V) and forward conduction currents of at least 10 A at 1.4 V (with corresponding forward current density of 500 A/cm2) are attractive for applications ranging from power distribution in electric/hybrid electric vehicles to power management in spacecraft and geothermal, deep-well drilling telemetry. A key requirement is the need for edge-termination design to prevent premature breakdown because of field crowding at the edge of the depletion region. We describe the simulation of structures incorporating various kinds of edge termination, including dielectric overlap and ion-implanted guard rings. Dielectric overlap using 5-μm termination of 0.1–0.2-μm-thick SiO2 increases the breakdown voltage of quasi-vertical diodes with 3-μm GaN epi thickness by a factor of ∼2.7. The use of even one p-type guard ring produces about the same benefit as the optimized dielectric overlap termination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号