首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
工业技术   43篇
  2013年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1979年   1篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
1.
Thermodynamic quantities were determined for the absorption of hydrogen in Pd-5.5at.%Li and Pd-7.2at.%Li alloys, the latter alloy being in the two-phase field of saturated -Pd(Li,s) solid solution and the ordered Pd7Li phase. Data were also determined for the Pd-10.6at.%Li alloy which consists only of the ordered Pd7Li phase. The data were determined from measurements of pressure-composition isotherms at temperatures between 273 K and 463 K and hydrogen pressures up to 1000 Torr. The Pd---Li alloys dissolve considerable amounts of hydrogen and form a more stable hydride phase than Pd despite the lattice contraction which occurs on alloying Pd with Li. The hydrogen solubility in the ordered Pd7Li phase alone is a little smaller than that in the two-phase mixture. The large hydrogen absorption of Pd---Li alloys, which does not depend on the presence of ordered Pd7Li, may be attributed to (i) an attractive H---Li pair interaction, (ii) a decrease in the strain energies necessary for hydrogen occupation of the interstices, because of the similar lattice parameters of the -Pd(Li,s) and ordered Pd7Li phases, and the large compressibility of Pd---Li alloys, and (iii) the valence of 1 of Li in Pd compared with 3 for, for example, Y in Pd.  相似文献   
2.
This paper describes the high performance of T-shaped-gate CMOS devices with effective channel lengths in the sub-0.1-μm region. These devices were fabricated by using selective W growth, which allows low-resistance gates smaller than 0.1 μm to be made without requiring fine lithography alignment. We used counter-doping to scale down the threshold voltage while still maintaining acceptable short-channel effects. This approach allowed us to make ring oscillators with a gate-delay time as short as 21 ps at 2 V with a gate length of 0.15 μm. Furthermore, we experimentally show that the high circuit speed of a sub-0.1-μm gate length CMOS device is mainly due to the PMOS device performance, especially in terms of its drivability  相似文献   
3.
This paper describes a new ultra-thin SOI-CMOS structure offering reduced parasitic diffusion-layer resistance. It addresses ways to deal with the ultra-shallow junctions required by sub-0.1 μm MOSFET's. Based on a CVD tungsten process we experimentally investigate the characteristics of selectively grown tungsten used in the source and drain region made in SOI layers of various thicknesses ranging from 10 to 100 nm. We also investigate certain CMOS device characteristics. The SOI-CMOS structure, with low parasitic diffusion-layer resistance and good contact characteristics for ultra-shallow junction devices exhibits superior device performance and high scalability  相似文献   
4.
A stable three-layer flow system, water/organic solvent/water, has been successfully applied for the first time in a microchannel to get rapid transport through an organic liquid membrane. In the continuous laminar flow region, the analyte (methyl red) was rapidly extracted across the microchannel from the donor to the acceptor phase through the organic solvent phase (cyclohexane). Thermal lens microscopy was used to monitor the process. The thickness of the organic phase, sandwiched by the two aqueous phases, was approximately 64 microm, and it was considered as a thin liquid organic membrane. Permeability studies showed the effects of molecular diffusion, layer thickness, and organic solvent-water partition coefficient on the molecular transport. In the microchip, complete equilibration was achieved in several seconds, in contrast to a conventionally used apparatus, where it takes tens of minutes. The thickness of the organic and aqueous boundary layers was defined as equal to the microchannel dimensions, and the organic solvent-water partition coefficient was determined on a microchip using the liquid/liquid extraction system. Experimental data on molecular transport across the organic membrane were in agreement with the calculated permeability based on the three-compartment water/organic solvent/water model. This kind of experiment can be performed only in a microspace, and the system can be considered as a potential biological membrane for future in vitro study of drug transport.  相似文献   
5.
By utilizing "multiinformation dyes (MIDs)", which have plural spectral change characteristics such as an absorption maximum wavelength (λ(max)) shift based on a polarity change and an absorbance change due to protonation, novel λ(max)-tunable ion-selective optodes were proposed and prepared by employing MIDs with membrane solvents having different polarities. For controlling the detecting λ(max) of the optode, the novel polar membrane solvent [2-[[6-(2-nitrophenoxy)hexyl]oxy]methyl]isobutane-1,3-diol was designed and synthesized, which was used together with a typical membrane solvent nitrophenyl octyl ether. By mixing these two membrane solvents, the λ(max) position of the optode detection wavelength can be shifted and controlled and was successfully applied to a λ(max)-tunable Li(+)-selective optode based on a highly Li(+)-selective ionophore TTD14C4. The λ(max) tuning technique is useful for preparing an optode system using a low-cost light source such as a light-emitting diode or a popular laser.  相似文献   
6.
Chemicofunctional membrane for integrated chemical processes on a microchip   总被引:1,自引:0,他引:1  
Here we report a design and synthesis of a chemically functional polymer membrane by an interfacial polycondensation reaction and multilayer flow inside a microchannel. Single and parallel dual-membrane structures are successfully prepared by using organic/aqueous two-layer flow and organic/aqueous/organic three-layer flow inside the microchannel followed by an interfacial polycondensation reaction. By using the inner-channel membrane, permeation of ammonia species through the inner-channel membrane is successfully achieved. Furthermore, horseradish peroxidase is immobilized on one side of the membrane surface to integrate the chemical transform function onto the inner-channel membrane. Here substrate permeation through the membrane and subsequent chemical transformation at the membrane surface are realized. The polymer membrane prepared inside the microchannel has an important role in ensuring stable contact of different phases such as gas/liquid or liquid/ liquid and the permeation of chemical species through the membrane. Furthermore, membrane surface modification chemistry allows chemical transformation of permeated chemical species. These methods are expected to lead to development of complicated and sophisticated chemical systems involving membrane permeation and chemical reactions.  相似文献   
7.
A fully depleted lean-channel transistor (DELTA) that has a gate with a vertical ultrathin SOI structure is reported. In the deep submicrometer region, selective oxidation is useful in realizing SOI isolation. It provides high crystalline quality, as good as that of conventional bulk single-crystal devices. Using experiments and three-dimensional simulation, it was shown that the gate structure has effective channel controllability and its vertical ultrathin SOI structure provides superior device characteristics  相似文献   
8.
The fluorescent acridinyl indicators 4-(9-acridinyl)-N-(5-hexenyl)-N-methylaniline (KD-F0011), 6-(9-acridinyl)-1,2,2,3-tetramethyl-2,3-dihydro- 1H-perimidine (KD-F0021), and 6-(9-acridinyl)-2-(3-butenyl)-1,2,3-trimethyl-2,3-dihydro-1H-perimidine (KD-F0022) were designed, synthesized, and applied for highly sensitive optical determination of low-level water in organic solvents. All these dyes were found useful as fluorescence indicators for the detection of water below 1% (v/v) in different solvent media with a low detection limit of 0.002% (v/v) or 20 mg/L (22 ppm by weight) for KD-F0021 in THF solution. Sensing membranes made from poly(ethylene glycol) dimethacrylate by photocopolymerization with the indicator KD-F0011 were also prepared. Using the membrane sensor, the lowest detection limit of 0.001% (v/v) or 14 mg/L (20 ppm) water was achieved in diethyl ether samples. This system enables the continuous monitoring of the water content in a flow-through arrangement, where single-wavelength excitation (404 nm) and single-wavelength detection (532 mm) can be used for the fluorescence determination, allowing a simple measurement setup. In a continuous-flow experiment using THF samples, fully reversible and fast signal changes with t95% = 1-2 min for water concentrations up to 0.50% (v/v) were observed. A detection limit of 0.004% (v/v) or 40 mg/L (45 ppm) water in THF was achieved. These characteristics make this type of sensor a useful tool for the online continuous monitoring of water present as an impurity in organic media, which is difficult to achieve using a Karl Fischer instrument.  相似文献   
9.
An experimental 1.5-V 64-Mb DRAM   总被引:1,自引:0,他引:1  
Low-voltage circuit technologies for higher-density dynamic RAMs (DRAMs) and their application to an experimental 64-Mb DRAM with a 1.5-V internal operating voltage are presented. A complementary current sensing scheme is proposed to reduce data transmission delay. A speed improvement of 20 ns was achieved when utilizing a 1.5-V power supply. An accurate and speed-enhanced half-VCC voltage generator with a current-mirror amplifier and tri-state buffer is proposed. With it, a response time reduction of about 1.5 decades was realized. A word-line driver with a charge-pump circuit was developed to achieve a high boost ratio. A ratio of about 1.8 was obtained from a power supply voltage as low as 1.0 V. A 1.28 μm2 crown-shaped stacked-capacitor (CROWN) cell was also made to ensure a sufficient storage charge and to minimize data-line interference noise. An experimental 1.5 V 64 Mb DRAM was designed and fabricated with these technologies and 0.3 μm electron-beam lithography. A typical access time of 70 ns was obtained, and a further reduction of 50 ns is expected based on simulation results. Thus, a high-speed performance, comparable to that of 16-Mb DRAMs, can be achieved with a typical power dissipation of 44 mW, one tenth that of 16-Mb DRAMs. This indicates that a low-voltage battery operation is a promising target for future DRAMs  相似文献   
10.
A general and simple implementation of simultaneous multiparametric sensing in a single microchip is presented by using a capillary-assembled microchip (CAs-CHIP) integrated with the plural different reagent-release capillaries (RRCs), acting as various biochemical sensors. A novel "drop-and-sip" technique of fluid handling is performed with a microliter droplet of a model sample solution containing proteases (trypsin, chymotrypsin, thrombin, elastase) and divalent cations (Ca2+, Zn2+, Mg2+) that passes through the microchannel with the aid of a micropipette as a vacuum pump, concurrently filling each RRC via capillary force. To avert the evaporation of the nanoliter sample volume in each capillary, PDMS oil is dropped on the outlet hole of the CAs-CHIP exploiting the capillary force that results in spontaneous sealing of all the RRCs. In addition, this high-speed sample introduction alleviates the possibility of protein adsorption and capillary cross-contamination, allowing a reliable and multianalyte determination of a sample containing many different proteases and divalent cations by using the fluorescence image analysis. Presented results suggested the possible application of this microchip in the field of drug discovery and systems biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号