首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
工业技术   3篇
  2018年   1篇
  2011年   1篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Merged Current Switch Logic (MCSL) and Differential Cascode Voltage Switch Logic (DCVSL) are two common structures for differential BiCMOS logic family, that have several potential applications in high-speed VLSI circuits. This paper studies the fault characterization of these BiCMOS circuits. The impact of each possible single defect on the behavior of the circuits is analyzed by simulation. A new class of faults which is unique to differential circuits is identified and its testability is assessed. We propose a design-for-testability method that facilitates testing of this class of faults. Two different realizations for this method are introduced. The impact of this circuit modification on the behavior of the circuit in normal mode is investigated  相似文献   
2.
Two main sources for power dissipation in parallel buses are data transitions on each wire and coupling between adjacent wires. So far, many techniques have been proposed for reducing the self and coupling powers. Most of these methods utilize one (or more) control bit(s) to manage the behavior of data transitions on the parallel bus. In this paper, we propose a new coding scheme, referred to as GPH, to reduce power dissipation of these control bits. GPH coding scheme employs partitioned Bus Invert and Odd Even Bus-Invert coding techniques. This method benefits from Particle Swarm Optimization (PSO) algorithm to efficiently partition the bus. In order to reduce self and coupling powers of the control bits, it finds partitions with similar transition behaviors and groups them together. One extra control bit is added to each group of partitions. Properly managing number of transitions on control bits of each partition and that of each group, GPH reduces total power consumption, including coupling power. It also locates control bits of each partition such that total power consumption is minimized. We evaluate the efficiency of the proposed method for coding data and address buses under various hardware platforms. Experimental results show 43% average power saving in coded data compared to the original one. We also show the prominence of our coding scheme over previously proposed techniques.  相似文献   
3.
This paper presents a robust and low-power single-ended robust 11T near-threshold SRAM cell in 10-nm FinFET technology. The proposed cell eliminates write disturbance and enhances write performance by disconnecting the path between cross-coupled inverters during the write operation. FinFETs suffer from width quantization, and SRAM performance is highly dependent to transistors sizing. The proposed structure with minimum sized tri-gate FinFETs operates without failure under major process variations. In addition, read disturbance is reduced by isolating the storage nodes during the read operations. To reduce power consumption this cell uses only one bit-line for both read and write operations. The proposed SRAM cell reduces write delay, average power and PDP by 20, 78 and 62%, respectively as compared to the 9T single-ended SRAM cell. Moreover, the proposed cell enhances write static noise margin by 33% under process variation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号