首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  国内免费   1篇
工业技术   117篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   2篇
  2018年   11篇
  2017年   10篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
Soft-grain materials such as clays and other colloidal pastes share the common feature of being composed of grains that can undergo large deformations without rupture. For the simulation of such materials, we present two alternative methods: (1) an implicit formulation of the material point method (MPM), in which each grain is discretized as a collection of material points, and (2) the bonded particle model (BPM), in which each soft grain is modeled as an aggregate of rigid particles using the contact dynamics method. In the MPM, a linear elastic behavior is used for the grains. In order to allow the aggregates in the BPM to deform without breaking, we use long-range center-to-center attraction forces between the primary particles belonging to each grain together with steric repulsion at their contact points. We show that these interactions lead to a plastic behavior of the grains. Using both methods, we analyze the uniaxial compaction of 2D soft granular packings. This process is nonlinear and involves both grain rearrangements and large deformations. High packing fractions beyond the jamming state are reached as a result of grain shape change for both methods. We discuss the stress-strain and volume change behavior as well as the evolution of the connectivity of the grains. Similar textures are observed at large deformations although the BPM requires higher stress than the MPM to reach the same level of packing fraction.  相似文献   
2.
The use of nanoparticles (NPs) in manufacturing continues to increase despite the growing concern over their potential environmental and health effects. Understanding the interaction of NPs and sewage sludge is crucial for determining the ultimate fate of NPs released to municipal wastewater treatment plants (WWTPs) as those interactions will determine whether the bulk of the material is retained in the sludge or released in the effluent stream. Analyzing the affinity of aluminum oxide, cerium oxide, and silicon oxide NPs, which are commonly used in semiconductor manufacturing processes, for biosolids used in municipal WWTPs provides a basis for estimating their removal efficiency. Batch studies were performed and the NPs were shown to partition onto the cellular surface. At the maximum equilibrium values tested (75-92 mg nanoparticles/L), the concentration of Al(2)O(3), CeO(2) and SiO(2) associated with the sludge was 137, 238, and 28 mg/g-sludge VSS, respectively. These results suggest that electrostatic interactions play a major role in determining NP association with biosolids.  相似文献   
3.
Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.  相似文献   
4.
Bi-supported Ziegler–Natta catalysts (TiCl4/MCM-41/MgCl2 (ethoxide type)) were synthesized to improve the morphology and the properties of polyethylene. The morphology control is a crucial issue in polymerization process, while tailoring the properties of polymers is needed for specific applications. The catalysts were synthesized in different ratios of two supports with impregnation method. The polymerization process was carried out in atmospheric slurry reactor. The catalysts were characterized with scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM–EDX), inductively coupled plasma, Fourier transform infrared spectrometry (FTIR), and Brunauer-Emmett-Teller (BET) methods. The polymers were analyzed with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry, FTIR, and tensile-strength analyses. Ubbelohde viscometer and frequency sweep measurements showed that the synthesized polymers are ultra-high-molecular-weight polyethylene. Mechanical properties of polymers showed higher Young's modulus in samples containing MCM-41, having higher thermal stability supported by TGA analysis. SEM images of bi-supported catalyst showed a controlled spherical morphology with uniform size distribution. SEM analysis support that the polymers replicate their morphology from catalyst, improving their morphology comparing to MgCl2-supported catalyst. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48553.  相似文献   
5.
6.
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low‐cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X‐ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti‐bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti‐bacterial activity.Inspec keywords: silver, nanoparticles, antibacterial activity, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectraOther keywords: green synthesis, silver nanoparticles, Glaucium corniculatum Curtis extract, antibacterial activity, metal nanoparticles, biosynthesis method, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, SEM, TEM, spherical shape, disc diffusion test, Ag  相似文献   
7.
Ultrasonic time-of-flight diffraction (ToFD) technique has high accuracy in locating and sizing discontinuities. The primary reason for this accuracy is the use of time instead of amplitude for measurement of the depth and size of discontinuities. Despite the many advantages of ToFD, it suffers from a number of shortcomings, the most notable one being its two-dimensional character. The goal of this paper is to develop an algorithm, as a prerequisite, to extend ToFD measurements to a three-dimensional space. For this purpose, a combination of multiple transmitting and receiving probes is proposed instead of just one pair commonly used in ToFD measurements. The approach for locating and sizing defects in a 3D space follows the methods used in radar and acoustic positioning systems. Non-iterative techniques are used for positioning a single source (defect) based on signals collected by several transducers. The estimation formula, in the form of a closed-form solution, is derived by linear least-squares minimization. In addition to existing conventional passive algorithms, a new active algorithm is also proposed for the general arrangement of transducers. This algorithm is tested on a steel specimen having an artificially implanted discontinuity and the three-dimensional location of the defect is estimated.  相似文献   
8.
Boundary stabilization of vibrating three‐dimensional Cosserat elastic solids are studied using mathematical tools, such as operator theory and semigroup techniques. The advantages of the boundary control laws for both boundary stabilization problems are investigated. The boundary stabilization problems are studied using a Lyapunov stability method and LaSalle's invariant set theorem. Numerical simulations are provided to illustrate the effectiveness and performance of the designed control scheme.  相似文献   
9.
The state of the art of a small modular reactor concept with a suspended core is presented. The reactor design is based on a fluidized bed concept and utilizes pressurized water reactor technology. The fuel is automatically removed from the reactor by gravity under any accident conditions. The reactor demonstrates the characteristics of inherent safety and passive cooling. Here two options for modification to the original design are proposed to increase the stability and thermal efficiency of the reactor. A modified version of the reactor involves the choice of supercritical steam as the coolant to produce a plant thermal efficiency of about 40%. Another option is to modify the shape of the reactor core to produce a non-fluctuating bed and, consequently, guarantee the dynamic stability of the reactor. The mixing of tantalum in the fuel is also proposed as an additional inhibition to the power excursion. The spent fuel pellets may not be considered nuclear waste, since they are of a shape and size that can easily be used as a source of radiation for food irradiation and industrial applications. The reactor can easily operate as a plutonium burner or can operate with a thorium fuel cycle.  相似文献   
10.
 The oxidation of trace organic impurities in ultrapure water by ultraviolet light (UV), ozone, and the combination of UV/ozone is investigated. The emphasis is on the development of a global model to simulate the process that take place in the typical oxidation reactors used in ultrapure water plants. The study also focuses on reaction mechanism for oxidation of multi-component organic impurities. Eighteen organic model compounds are chosen as representative contaminants. The results demonstrate and confirm a significant synergistic effect between UV and ozone oxidation. A mechanism for the synergistic oxidation of organic impurities is proposed and validated with experimental data. The combination of the reaction and the reactor models is used to determine the fundamental kinetic parameters involved in the three oxidation processes. Received: 3 July 1998 / Accepted: 4 September 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号