首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   22篇
  国内免费   3篇
工业技术   366篇
  2023年   6篇
  2022年   29篇
  2021年   23篇
  2020年   12篇
  2019年   16篇
  2018年   13篇
  2017年   24篇
  2016年   17篇
  2015年   13篇
  2014年   13篇
  2013年   32篇
  2012年   20篇
  2011年   32篇
  2010年   16篇
  2009年   23篇
  2008年   14篇
  2007年   17篇
  2006年   9篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1980年   1篇
排序方式: 共有366条查询结果,搜索用时 0 毫秒
1.
2.
Estimation of elastic constant of rocks using an ANFIS approach   总被引:4,自引:0,他引:4  
The engineering properties of the rocks have the most vital role in planning of rock excavation and construction for optimum utilization of earth resources with greater safety and least damage to surroundings. The design and construction of structure is influenced by physico-mechanical properties of rock mass. Young's modulus provides insight about the magnitude and characteristic of the rock mass deformation due to change in stress field. The determination of the Young's modulus in laboratory is very time consuming and costly. Therefore, basic rock properties like point load, density and water absorption have been used to predict the Young's modulus. Point load, density and water absorption can be easily determined in field as well as laboratory and are pertinent properties to characterize a rock mass. The artificial neural network (ANN), fuzzy inference system (FIS) and neuro fuzzy are promising techniques which have proven to be very reliable in recent years. In, present study, neuro fuzzy system is applied to predict the rock Young's modulus to overcome the limitation of ANN and fuzzy logic. Total 85 dataset were used for training the network and 10 dataset for testing and validation of network rules. The network performance indices correlation coefficient, mean absolute percentage error (MAPE), root mean square error (RMSE), and variance account for (VAF) are found to be 0.6643, 7.583, 6.799, and 91.95 respectively, which endow with high performance of predictive neuro-fuzzy system to make use for prediction of complex rock parameter.  相似文献   
3.
If the direct feed approach to vitrify the Hanford's tank waste is implemented, the low activity waste (LAW) will comprise higher concentrations of alkali/alkaline-earth sulfates than expected under the previously proposed vitrification scheme. To ensure a minimal impact of higher sulfate concentrations on the downstream operations and overall cost of vitrification, advanced glass formulations with enhanced sulfate loadings (solubility) are needed. While, the current sulfate solubility predictive models have been successful in designing LAW glasses with sulfate loadings <2 wt.%, it will be difficult for them to design glass compositions with enhanced loadings due to our limited understanding of the fundamental science governing these processes. In this pursuit, this article unearths the underlying compositional and structural drivers controlling the sulfate solubility in model LAW glasses. It has been shown that the preferentially removes non-framework cations from the modifier sites in the silicate network, thus, leading to the polymerization in the glass network via the formation of ring-structured borosilicate units. Furthermore, though the sulfate solubility slightly decreases with increasing Li+/Na+ in the glasses, the prefers to be charge compensated by Na+, as it is easier for to break Na–O bonds instead of Li–O bonds.  相似文献   
4.
Spatiotemporal deformations of the free charged surface of a thin electrolyte film undergoing a coupled electrokinetic flow composed of an electroosmotic flow (EOF) on a charged solid substrate and an electrophoretic flow (EPF) at its free surface are explored through linear stability analysis and the long-wave nonlinear simulations. The nonlinear evolution equation for the deforming surface is derived by considering both the Maxwell’s stresses and the hydrodynamic stresses. The electric potential across the film is obtained from the Poisson–Boltzmann equation under the Debye–Hückel approximation. The simulations show that at the charged electrolyte–air interface, the applied electric field generates an EPF similar to that of a large charged particle. The EOF near the solid–electrolyte interface and the EPF at the electrolyte–air interface are in the same (or opposite) directions when the zeta potentials at the two interfaces are of the opposite (or same) signs. The linear and nonlinear analyses of the evolution equation predict the presence of travelling waves, which is strongly modulated by the applied electric field and the magnitude/sign of the interface zeta potentials. The time and length scales of the unstable modes reduce as the sign of zeta potential at the two interfaces is varied from being opposite to same and also with the increasing applied electric field. The increased destabilization is caused by a reverse EPF near the free surface when the interfaces bear the same sign of zeta potentials. Flow reversal by EPF at the free surface occurs at smaller zeta potential of the free surface when the film is thicker because of less influence of the EOF arising at the solid–electrolyte boundary. The amplitude of the surface waves is found to be smaller when the unstable waves travel at a faster speed. The films can undergo pseudo-dewetting when the free surface is almost stationary under the combined influences of EPF and EOF. The free surface instability of the coupled EOF and EPF has some interesting implications in the development of micro/nano fluidic devices involving a free surface.  相似文献   
5.
This research compares two time-series interferometric synthetic aperture radar (InSAR) methods, namely persistent scatterer SAR interferometry (PS-InSAR) and small baseline subset (SBAS) to retrieve the deformation signal from pixels with different scattering characteristics. These approaches are used to estimate the surface deformation in the L’Aquila region in Central Italy where an earthquake of magnitude Mw 6.3 occurred on 6 April 2009. Fourteen Environmental Satellite (ENVISAT) C-band Advanced Synthetic Aperture Radar (ASAR) images, covering the pre-seismic, co-seismic, and post-seismic period, are used for the study. Both the approaches effectively extract measurement pixels and show a similar deformation pattern in which the north-west and south-east regions with respect to the earthquake epicentre show movement in opposite directions. The analysis has revealed that the PS-InSAR method extracted more number of measurement points (21,103 pixels) as compared to the SBAS method (4886 pixels). A comparison of velocity estimates shows that out of 833 common pixels in both the methods, about 62% (517 pixels) have the mean velocity difference below 3 mm year?1 and nearly 66% pixels have difference below 5 mm year?1. It is concluded that StaMPS-based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean line of sight (LOS) velocity as compared to SBAS method.  相似文献   
6.
7.
Drug discovery, which aids to identify potential novel treatments, entails a broad range of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug development, predicting drug–target affinity is crucial. The proposed model, the prediction of drug–target affinity using a convolution model with self-attention (CSatDTA), applies convolution-based self-attention mechanisms to the molecular drug and target sequences to predict drug–target affinity (DTA) effectively, unlike previous convolution methods, which exhibit significant limitations related to this aspect. The convolutional neural network (CNN) only works on a particular region of information, excluding comprehensive details. Self-attention, on the other hand, is a relatively recent technique for capturing long-range interactions that has been used primarily in sequence modeling tasks. The results of comparative experiments show that CSatDTA surpasses previous sequence-based or other approaches and has outstanding retention abilities.  相似文献   
8.

Change point detection algorithms have numerous applications in areas of medical condition monitoring, fault detection in industrial processes, human activity analysis, climate change detection, and speech recognition. We consider the problem of change point detection on compositional multivariate data (each sample is a probability mass function), which is a practically important sub-class of general multivariate data. While the problem of change-point detection is well studied in univariate setting, and there are few viable implementations for a general multivariate data, the existing methods do not perform well on compositional data. In this paper, we propose a parametric approach for change point detection in compositional data. Moreover, using simple transformations on data, we extend our approach to handle any general multivariate data. Experimentally, we show that our method performs significantly better on compositional data and is competitive on general data compared to the available state of the art implementations.

  相似文献   
9.
10.
Borates and borosilicates are potential candidates for the design and development of glass formulations with important industrial and technological applications. A major challenge that retards the pace of development of borate/borosilicate based glasses using predictive modeling is the lack of reliable computational models to predict the structure-property relationships in these glasses over a wide compositional space. A major hindrance in this pursuit has been the complexity of boron-oxygen bonding due to which it has been difficult to develop adequate B–O interatomic potentials. In this article, we have evaluated the performance of three B–O interatomic potential models recently developed by Bauchy et al [J. Non-Cryst. Solids, 2018, 498, 294–304], Du et al [J. Am. Ceram. Soc. https://doi.org/10.1111/jace.16082 ] and Edèn et al [Phys. Chem. Chem. Phys., 2018, 20, 8192–8209] aiming to reproduce the short-to-medium range structures of sodium borosilicate glasses in the system 25 Na2O x B2O3 (75 − x) SiO2 (x = 0-75 mol%). To evaluate the different force fields, we have computed at the density functional theory level the NMR parameters of 11B, 23Na, and 29Si of the models generated with the three potentials and the simulated MAS NMR spectra compared with the experimental counterparts. It was observed that the rigid ionic models proposed by Bauchy and Du can both reliably reproduce the partitioning between BO3 and BO4 species of the investigated glasses, along with the local environment around sodium in the glass structure. However, they do not accurately reproduce the second coordination sphere of silicon ions and the Si–O–T (T = Si, B) and B-O-T distribution angles in the investigated compositional space which strongly affect the NMR parameters and final spectral shape. On the other hand, the core-shell parameterization model proposed by Edén underestimates the fraction of BO4 species of the glass with composition 25Na2O 18.4B2O3 56.6SiO2 but can accurately reproduce the shape of the 11B and 29Si MAS-NMR spectra of the glasses investigations due to the narrower B–O–T and Si-O-T bond angle distributions. Finally, the effect of the number of boron atoms (also distinguishing the BO3 and BO4 units) in the second coordination sphere of the network former cations on the NMR parameters have been evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号