首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
工业技术   2篇
  2008年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
采用Cu-Ni/Solder/Ni-Cu互连结构,在加载的电流密度为0.4×104 A/cm2的条件下,得到了界面阴极处金属原子的电迁移.数值模拟揭示了其原因是由于凸点互连结构的特殊性,电子流在流经凸点时会发生流向改变进而形成电流聚集,此处的电流密度超过电迁移的门槛值,从而诱发电迁移.运用高对流系数的热传导方法降低了互连焊点的实际温度,在电迁移的扩展阶段显著减小了高温引起的原子热迁移对电迁移的干扰;因此电迁移力是原子迁移的主要驱动力.在电迁移的快速失效阶段,原子的迁移是热迁移和电迁移共同作用的结果:电迁移力驱动阴极处原子的迁移,造成局部区域的快速温升,从而加剧此处原子的热迁移.  相似文献   
2.
采用Cu-Ni/Solder/Ni-Cu互连结构,在加载的电流密度为0.4×104 A/cm2的条件下,得到了界面阴极处金属原子的电迁移.数值模拟揭示了其原因是由于凸点互连结构的特殊性,电子流在流经凸点时会发生流向改变进而形成电流聚集,此处的电流密度超过电迁移的门槛值,从而诱发电迁移.运用高对流系数的热传导方法降低了互连焊点的实际温度,在电迁移的扩展阶段显著减小了高温引起的原子热迁移对电迁移的干扰;因此电迁移力是原子迁移的主要驱动力.在电迁移的快速失效阶段,原子的迁移是热迁移和电迁移共同作用的结果:电迁移力驱动阴极处原子的迁移,造成局部区域的快速温升,从而加剧此处原子的热迁移.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号