首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
数理化   19篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有19条查询结果,搜索用时 38 毫秒
1.
Abstract

In this paper, we report the influence of the mode of deformation on recrystallisation kinetics through experiments, theory and a phase field model. Ni samples of 99.6% purity are subjected to torsion and rolling at two equivalent plastic strains and the recrystallisation kinetics and microstructure are compared experimentally. Due to significant differences in the distributions of the nuclei and stored energy for the same equivalent strain, large differences are observed in the recrystallisation kinetics of rolled and torsion-tested samples. Next, a multi-phase field model is developed in order to understand and predict the kinetics and microstructural evolution. The coarse-grained free energy parameters of the phase field model are taken to be a function of the stored energy. In order to account for the observed differences in recrystallisation kinetics, the phase field mobility parameter is a required constitutive input. The mobility is calculated by developing a mean field model of the recrystallisation process assuming that the strain free nuclei grow in a uniform stored energy field. The activation energy calculated from the mobilities obtained from the mean field calculation compares very well with the activation energy obtained from the kinetics of recrystallisation. The recrystallisation kinetics and microstructure as characterised by grain size distribution obtained from the phase field simulations match the experimental results to good accord. The novel combination of experiments, phase field simulations and mean field model facilitates a quantitative prediction of the microstructural evolution and kinetics.  相似文献   
2.
An on-line, electronic feedback approach for automatic alignment of a laser resonator is described. A measure of the resonator alignment error is derived by partitioning a 1% sample of the laser output into quadrants, and using standard electronic circuits to compare the average power present in each quadrant. A motorized XY alignment system is then used to implement the alignment changes required to maintain optimum output quality from the laser. The system is shown capable of stabilizing the output power in each quadrant of the beam to within about 2% of the optimum level.  相似文献   
3.
The output characteristics of several large-area multichannel unstable resonators are presented. The conventional unstable resonator and a novel toric unstable resonator, in both confocal and nonconfocal configurations, have been studied. Output beam profiles, optical energy extraction, beam focusability, resonator alignment properties and polarization states of the various resonators have been analysed in depth.  相似文献   
4.
Selective laser patterning of thin films in a multilayered structure is an emerging technology for process development and fabrication of optoelectronics and microelectronics devices. In this work, femtosecond laser patterning of electrochromic Ta0.1W0.9Ox film coated on ITO glass has been studied to understand the selective removal mechanism and to determine the optimal parameters for patterning process. A 775 nm Ti:sapphire laser with a pulse duration of 150 fs operating at 1 kHz was used to irradiate the thin film stacks with variations in process parameters such as laser fluence, feedrate and numerical aperture of objective lens. The surface morphologies of the laser irradiated regions have been examined using a scanning electron microscopy and an optical surface profiler. Morphological analysis indicates that the mechanism responsible for the removal of Ta0.1W0.9Ox thin films from the ITO glass is a combination of blistering and explosive fracture induced by abrupt thermal expansion. Although the pattern quality is divided into partial removal, complete removal, and ITO film damage, the ITO film surface is slightly melted even at the complete removal condition. Optimal process window, which results in complete removal of Ta0.1W0.9Ox thin film without ablation damage in the ITO layer, have been established. From this study, it is found that focusing lens with longer focal length is preferable for damage-free pattern generation and shorter machining time.  相似文献   
5.
Laser surface texturing process involves creation of microfeatures, e.g., tiny dimples, usually distributed in a certain pattern, covering only a fraction of the surface of the material that is being treated. The process offers several advantages for tribological applications, including improved load capacity, wear resistance, lubrication lifetime, and reduced friction coefficient. In the present study, the surface modification of gray cast iron, using millisecond (λ = 1,064 nm), nanosecond (λ = 1,064 nm) and femtosecond (λ = 800 nm) pulse duration laser irradiation, is adopted to establish a particular geometrical pattern with dimple features and dimensions, to improve wear and friction behavior. The effect of various laser processing parameters, including laser pulse energy, pulse duration and processing speed, on the performance characteristics of the laser-treated samples is investigated. The microtextured surfaces were produced on gray cast iron using different millisecond (0.5 ms), nanosecond (40 ns) and femtosecond (120 fs) laser source with the dimple depth between 3 and 15 μm. The coefficient of friction for the untextured surface was ~0.55, millisecond laser textured ~0.31, nanosecond laser textured ~0.02 and femtosecond laser ~0.01, under normal force of 50 N and sliding speed of 63 mm/s. Surface texturing of the gray cast iron surface using femtosecond pulse duration resulted in significant improvement in wear resistance in comparison to the untextured as well as millisecond and nanosecond laser-textured surface.  相似文献   
6.
7.
The microstructure and texture evolution during annealing of rolled pure Mg, at temperatures ranging from 150 to 400°C, was characterised in the present study. A grain growth exponent of n?=?13 was observed and the activation energy for grain growth kinetics was found to be 95.6?kJ?mol?1. Further, broadening of the normalised grain size distributions, indicating abnormal grain growth, was also observed at all temperatures of annealing. The sample had a dominant basal texture before annealing. However, after annealing up to a temperature of 300°C, the alleviation of basal texture was observed in the samples. On further annealing at a temperature of 400°C, a strong basal texture was developed in the samples. The mobility of high angle grain boundaries, which is proportional to correlated misorientation distribution, was observed to be responsible for texture strengthening of the material. The grain boundary mobility changes during grain growth led to the growth of either small or large grains. It was further observed that the growth of small grains caused the formation of basal fibre and large grains led to the weakening of basal texture.  相似文献   
8.
This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (ε). It was found that the crystallite size is reduced substantially already at ε=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to ε=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.  相似文献   
9.
Femtosecond laser micromilling of Si wafers   总被引:1,自引:0,他引:1  
Femtosecond laser micromilling of silicon is investigated using a regeneratively amplified 775 nm Ti:Sapphire laser with a pulse duration of 150 fs operating at 1 kHz repetition rate. The morphological observation and topological analysis of craters fabricated by single-shot laser irradiation indicated that the material removal is thermal in nature and there are two distinct ablation regimes of low fluence and higher fluence with logarithmical relations between the ablation depth and the laser fluence. Crater patterns were categorized into four characteristic groups and their formation mechanisms were investigated. Femtosecond laser micromilling of pockets in silicon was performed. The effect of process parameters such as pulse energy, translation speed, and the number of passes on the material removal rate and the formation of cone-shaped microstructures were investigated. The results indicate that the microstructuring mechanism has a strong dependence on the polarization, the number of passes and laser fluence. The optimal laser fluence range for Si micromilling was found to be 2-8 J/cm2 and the milling efficiency attains its maximum between 10 and 20 J/cm2.  相似文献   
10.
The operational characteristics of a convectively cooled Magnetically stabilized, Photo-initiated, Impulse-enhanced, Electrically-excited (MAGPIE) coaxial discharge system are described. terminal behavior is examined as a function of several parameters, such as gas flow, pulser ionization, and magnetic field strength. In-situ plasma potential measurements are also presented, which indicate that CO2 attachment effects have considerable influence on the spatial electrical characteristics of the gas discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号