首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
  国内免费   2篇
数理化   58篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2013年   6篇
  2011年   5篇
  2010年   1篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
The effect of strain in the axial coordination of imidazole to the heme has been studied in the chelate complexes deuterohemin-histidine (DH-His) and deuterohemin-alanylhistidine (DH-AlaHis). Molecular mechanics calculations indicate that three types of distortion of the axial ligand occur in DH-His, due to the relatively short length of the arm carrying the donor group: tilting off-axis, tipping, and inclination of the imidazole plane with respect to the axial Fe-N bond. The effects of tilting (Deltagamma approximately 10 degrees ) and inclination of the imidazole ring (Deltadelta approximately 17 degrees ) are dominant, while tipping is small and is probably of little importance here. By contrast, the axial imidazole coordination is normal in DH-AlaHis and other computed deuterohemin-dipeptide or -tripeptide complexes where histidine is the terminal residue, the only exception being DH-ProHis, where the rigidity of the proline ring reduces the flexibility of the chelating arm. The distortion in the axial iron-imidazole bond in DH-His has profound and negative influence on the binding and catalytic properties of this complex compared to DH-AlaHis. The former complex binds more weakly carbon monoxide, in its reduced form, and imidazole, in its oxidized form, than the latter. The catalytic efficiency in peroxidative oxidations is also reduced in DH-His with respect to DH-AlaHis. The activity of the latter complex is similar to that of microperoxidase-11, the peptide fragment incorporating the heme that results from hydrolytic cleavage of cytochrome c.  相似文献   
2.
The effect of nitrite in the sulfoxidation of organic sulfides catalyzed by myoglobin (Mb) in the presence of hydrogen peroxide has been investigated. A general improvement in enantioselectivity was found for the reaction catalyzed by horse heart metMb and a series of sperm whale metMb derivatives including the wild type protein, the active site mutants T67K Mb, T67R Mb, T67R/S92D Mb, and the T67K Mb derivative reconstituted with the modified prosthetic group protohemin-l- histidine methyl ester.  相似文献   
3.
1,3-bis(4-nitrophenyl)urea (1) interacts through hydrogen bonding with a variety of oxoanions in an MeCN solution to give bright yellow 1:1 complexes, whose stability decreases with the decreasing basicity of the anion (CH3COO- > C6H5COO- > H2PO4- > NO2- > HSO4- > NO3-). The [Bu4N][1.CH3COO] complex salt has been isolated as a crystalline solid and its molecular structure determined, showing the formation of a discrete adduct held together by two N-H...O hydrogen bonds of moderate strength. On the other hand, the F- ion first establishes a hydrogen-bonding interaction with 1 to give the most stable 1:1 complex, and then on addition of a second equivalent, induces urea deprotonation, due to the formation of HF2-. The orange-red deprotonated urea solution uptakes carbon dioxide from air to give the tetrabutylammonium salt of the hydrogencarbonate H-bond complex, [Bu4N][1.HCO3], whose crystal and molecular structures have been determined.  相似文献   
4.
The dinuclear and trinuclear Cu(II) complexes of an octadentate ligand derived from (S)-1,1'-binaphthyl-2,2'-diamine have been prepared and characterized by UV/Vis, CD, EPR and NMR spectroscopy. The ligand contains two tridentate aminobis(benzimidazole) donor arms connected to a central bidentate diaminobinaphthyl linker, which hosts the chiral unit. In the dinuclear Cu complex the ligation occurs essentially within the tridentate arms of the ligand. The two Cu centers are EPR nonequivalent and noninteracting. The EPR data suggests that one of the Cu ions additionally interacts with one of the tertiary aminonaphthyl donors. In the trinuclear complex the two aminonaphthyl donors bind the third Cu ion. The EPR spectrum of this complex shows the signal for a mononuclear Cu(II) center bound to a tridentate arm, while the remaining two Cu(II) centers are coupled through hydroxo groups. The CD spectrum shows that in the free ligand a severe reduction of the dihedral angle between the naphthyl groups from the strain free range occurs. This conformation is stabilized by ring stacking interactions with the benzimidazole groups. On complex formation this interaction is removed because the benzimidazole groups are involved in metal binding. In the dinuclear Cu complex the conformation of the binaphthyl chromophore probably approaches the strain free range, while in the trinuclear Cu complex a marked flattening of the dihedral angle between the two naphthyl rings occurs. Both complexes are active catalysts in the oxidation of L-/D-Dopa derivatives to quinones. High enantioselectivity is observed in the oxidation of L-/D-Dopa methyl ester catalyzed by the dinuclear Cu complex, which exhibits strong preference for the d enantiomer. The enantioselectivity is largely lost for the trinuclear Cu complex.  相似文献   
5.
Bulk superconducting samples of type Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ, (Tl, Pb)/Sr-1212, with 0.0 ≤ x ≤ 0.525 were prepared by the conventional one-step solid-state reaction technique. The prepared samples were investigated using X-ray powder diffraction, electrical resistivity and electron paramagnetic resonance (EPR) measurements. Enhancement of the phase formation, superconducting transition temperature T c and hole carriers concentration P was observed up to x = 0.075. For x > 0.075, a reverse trend was observed. EPR spectra were measured at different temperatures (120–290 K) for all prepared samples. The number of spins N participating in the resonance and the paramagnetic susceptibility χ were calculated as a function of both Ru-content and temperature. N and χ increased as the Ru-content increased. A linear relationship between logN and 1/T was established, from which the activation energy E a was calculated as a function of the Ru-content. The temperature dependence of χ was fitted according to Curie–Weiss type of magnetic behavior. Curie constant C, Curie temperature θ, the effective magnetic moment μ and the electronic specific heat γ were estimated as a function of the Ru-content.  相似文献   
6.
The influence of the positively charged N-methylpyridinium substituent on the anion binding tendencies of urea-based receptors has been investigated by comparing molecules 1 and 2. These receptors have been studied in acetonitrile, by performing UV-vis. and (1)H NMR titrations with several anions. UV-vis. titrations have also been performed in DMSO, MeOH and CHCl(3)/CH(3)CN mixture (1/1, v/v). In the case of 1, the presence of both H-donor and H-acceptor groups (urea and pyridine, respectively) favours aggregation and the formation of dimers in the solid state. In solution, this tendency to aggregate reduces affinity for anions with respect to the similar urea-based receptor 3. The methylation of the pyridyl group of 1 leads to the pyridinium-containing receptor 2. The pyridinium positive charge enhances the acidity of urea and increases anion affinity, as evidenced by the comparison of the binding constants. Both receptors (1-2) form stable adducts with all investigated anions. However, in the case of 2, the formation of 1?:?1 adducts with basic anions, such as acetate and fluoride, is followed by a proton transfer process. Quite interestingly, deprotonation does not involve the urea group, thus preserving the 1?:?1 adduct, as demonstrated by the (1)H NMR measurements. In particular, the proton transfer process takes place at the methylene group linking the pyridinium fragment to the receptor's skeleton. (1)H NMR studies indicate the formation of a stable neutral methine species, characterised by the loss of aromaticity by the pyridyl ring. These results open new perspectives in the field of anion recognition, as receptor 2 may by applied to the monitoring of both bound anion (through the urea unit) and excess anion in solution (through the development of the yellow methine species).  相似文献   
7.
ABSTRACT

Bayfol (PC-PBT blend ?lm) is a class of polymeric solid-state nuclear track detector which has a lot of applications in several radiation detection ?elds. It is a bisphenol-A polycarbonate PC blended with polybutylene terephthalate PBT. Bayfol/Palladium (PC-PBT/Pd) nanocomposite films have been deposited using the molding technique. It is worth mentioning that this report is almost the first one dealing with the topic of the changes of physical properties of Bayfol/Pd nanocomposite due to laser exposure. Samples from PC-PBT/Pd (5?wt%) nanocomposite were exposed to IR-pulsed laser of 5-W power, capable of producing 2000 pulses per second with pulse duration of 200?ns at 904?nm. The laser fluences were in the range 2–25?J/cm2. The resultant modi?cations in the exposed nanocomposite samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction (XRD), UV spectroscopy and color difference studies. The results indicate the proper dispersion of Pd nanoparticles in the PC-PBT matrix that causes a strong intermolecular interaction between Pd and PC-PBT, resulted in an increase in refractive index and the amorphous phase. Also, it is found that the laser exposure reduces the optical energy gap that could be attributed to the increase in structural disorder of the exposed PC-PBT/Pd nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the exposed samples and the non-exposed one, was increased with increasing the laser fluence, convoyed by a significant increase in the green and yellow color components.  相似文献   
8.
9.
10.
The generation of reactive quinone species (DAQ) from oxidation of dopamine (DA) is involved in neurodegenerative pathologies like Parkinson's disease (A. Borta, G. U. H?glinger, J. Neurochem. 2007, 100, 587-595). The oxidation of DA to DAQ can occur either in a single two-electron process or in two consecutive one-electron steps, through semiquinone radicals, giving rise to different patterns of reactions. The former type of reaction can be promoted by tyrosinase, the latter by peroxidases in the presence of H(2)O(2), which can be formed under oxidative stress conditions. Both enzymes were employed for the characterization of the thiol-catechol adducts formed by reaction of DA and cysteine or glutathione, and for the identification of specific amino acid residues modified by DAQs in two representative target proteins, human and horse heart myoglobin. Our results indicate that the cysteinyl-DA adducts are formed from the same quinone intermediate independently of the mechanism of DA oxidation, and that the hallmark of a radical mechanism is the formation of the cystine dimer. The reactivity of quinone species also controls the DA-promoted derivatization of histidine residues in proteins. However, for the modification of the cysteine residue in human myoglobin, a radical intramolecular mechanism has been proposed, in which the protein acts both as the catalyst and target of the reaction. Most importantly, the modification of myoglobins through DAQ linkages, and in particular by DA oligomers, has dramatic effects on their stability, as it induces protein unfolding and incorporation into insoluble melanic precipitates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号