首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
数理化   3篇
  2012年   2篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 71 毫秒
1
1.
Hydrogenation, crystal structure and magnetic properties of La(Fe0.91Si0.09)13H(D)y have been studied by pressure-composition isotherms (PCI), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetization measurements. The maximum absorption capacity is found to be 1.9 H(D) atoms per formula unit as a solid solution. All hydrides and deuterides crystallize in the NaZn13-type cubic structure with the lattice parameter increasing linearly with H(D) concentration. The H(D) absorption enhances the Curie temperature significantly. The magnetic entropy change of the highly H-absorbed compound La(Fe0.91Si0.09)13H1.81 reaches ~26 J/kg·K under a magnetic field change of 5 T near the Curie temperature TC = 350 K. No observable isotope effect seems to imply that only the magnetovolume effect is responsible for the strong interplay between magnetism and lattice.  相似文献   
2.
王志翠  何伦华  王海  刘荣灯  王芳卫 《中国物理 B》2012,21(4):46101-046101
The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances.  相似文献   
3.
The crystallographic structure and magnetic properties of La(Fe 11.4 Al 1.6 )C 0.02 are studied by magnetic measure- ment and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe 11.4 Al 1.6 )C 0.02 crystallizes into the cubic NaZn 13 -type with two different Fe sites: Fe I (8b) and Fe II (96i), and that Al atoms preferentially occupy the Fe II site. A ferromagnetic state can be induced at a medial temperature of 39 K–139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe 11.4 Al 1.6 )C 0.02 has no net magnetization in the paramagnetic (T > T N = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe–Fe bond length indicates that the ferromagnetic state prefers longer Fe–Fe distances.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号