首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
数理化   16篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
基于Adaboost+OLDA和近红外光谱的猪肉贮藏时间辨别   总被引:1,自引:0,他引:1  
猪肉的贮藏时间和猪肉的新鲜度紧密相关。通过近红外漫反射光谱技术获取猪肉样本数据,利用正交线性判别分析(OLDA)算法进行特征提取,同时将自适应提升法(Adaboost)引入OLDA,提出了一种基于Adaboost和OLDA的集成学习算法——Adaboost+OLDA。实验针对分类正确率和运算时间将传统特征提取算法(PCA+LDA和OLDA)和Adaboost+OLDA算法进行了对比研究,结果表明Adaboost+OLDA算法不仅具有很好的运算效率,而且提高了OLDA算法的泛化能力,在猪肉样本测试中达到了95%以上的分类正确率。  相似文献   
2.
贮存时间是影响生菜品质的一项重要因素,传统的贮存时间鉴别方法主要依靠人工经验,但是这种方法的准确率和可信度并不高。研究的目标是建立一种基于模糊识别的模型进行生菜光谱分析以实现生菜贮存时间的鉴别,并与其他鉴别方法作比较。为此,在当地超市购买60份新鲜生菜样品,存放于冰箱中待用。首先,通过AntarisⅡ近红外光谱检测仪采集生菜样品的近红外光谱数据,每隔12小时检测一次,每个样本检测重复三次,并取三次平均值作为实验数据。其次,利用多元散射校正(MSC)减少近红外光谱中的冗余信息。为了进一步去除近红外光谱中的无用信息以及简化随后的数据分类过程,分别运用主成分分析(PCA)和排序主成分分析(PCA Sort)。其中,PCA Sort通过改进对主成分的排序方法能提高分类准确率,同时便于模糊线性鉴别分析(FLDA)进一步提取特征。PCA和PCA Sort的计算仅运用了前15个主成分(能充分反映光谱的主要信息)。最后,利用模糊线性鉴别分析算法(FLDA)和K近邻算法(KNN)进一步分类所得的低维数据。基于PCA和KNN算法的模型鉴别准确率达到43%,而基于PCA, FLDA和KNN算法的模型鉴别准确...  相似文献   
3.
红外光谱分析是基于分子振动与跃迁理论的鉴别物质化学组成的技术.得到的光谱数据常常具有较高的维数和重叠度,这给后续的数据处理带来困难.为此提出一种GK可能C均值聚类算法(GKIPCM),引入了GK聚类算法的马氏距离测度与改进的可能C均值聚类算法(IPCM)的模糊隶属度与聚类中心更新方程,使样本的距离测度具有自适应性且避免...  相似文献   
4.
基于高光谱图像的生菜叶片氮素含量预测模型研究   总被引:2,自引:0,他引:2  
为了便于更经济合理地为作物施肥,建立一种无损检测作物氮营养元素的高光谱图像模型。本实验以生菜为研究对象,无土栽培各氮素水平的生菜叶样本,在莲座期,采集生菜叶片样本的高光谱图像(390~1050 nm),同时采用凯氏定氮法测定对应生菜叶片样本的全氮含量。通过ENVI软件提取出生菜叶片中感兴趣区域的平均光谱作为该样本原始光谱信息,分别使用平滑处理(Smoothing)、多元散射矫正(MSC)、标准正态变量变换结合去趋势(SNV detrending)、一阶导数法(First derivative)、二阶导数法(Second derivative)、正交信号矫正(OSC)等预处理方法对样本原始光谱进行处理,然后利用偏最小二乘回归法(Partial least squares regression,PLSR)分别建立样本全波段光谱信息与氮含量的关系模型,研究各预处理方法对氮含量模型的影响,结果表明,使用OSC预处理的模型效果最好。为了简化模型,根据OSC预处理光谱后的模型的PLSR回归系数优选出敏感波长,利用训练集中样本的敏感波长光谱信息与氮含量数据重新构建PLSR回归模型,并利用测试集样本进行测试试验。结果表明,该模型得到校正集和预测集的决定系数(R2p)分别为0.89,0.81;均方根误差RMSEC,RMSEP分别为0.33,0.45。该回归模型大大降低了自变量个数,简化了模型,并且取得了较优的效果,这为生菜氮素含量预测提供了一种新的快速有效方法。  相似文献   
5.
生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储藏时间。以60个新鲜生菜样本为研究对象,采用Antaris Ⅱ近红外光谱分析仪每隔12 h检测生菜的近红外漫反射光谱,共检测三次,光谱扫描的波数范围为10 000~4 000 cm-1。首先用主成分分析(PCA)对1 557维的生菜近红外光谱进行降维处理以减少冗余信息,取前20个主成分,经过PCA处理后得到20维的数据。然后用线性判别分析(LDA)提取光谱数据的鉴别信息以提高聚类的准确率,取鉴别向量数为2,则LDA将20维的数据转换为2维数据。最后以模糊C-均值聚类(FCM)的类中心作为FKHM和GFKHM的初始聚类中心,分别运行FKHM和GFKHM计算模糊隶属度以实现生菜储藏时间的鉴别。结果表明,GFKHM的鉴别准确率能达到92.5%,FKHM的鉴别准确率为90.0%,GFKHM具有比FKHM更高的鉴别准确率。GFKHM的聚类中心比FKHM更逼近真实类中心。GFKHM的收敛速度明显快于FKHM。采用近红外光谱技术同时结合GFKHM,PCA和LDA为快速和无损地鉴别生菜储藏时间提供了一种新的方法。  相似文献   
6.
茶作为世界最受欢迎的三大饮料之一,不仅能够提神醒脑,而且还有帮助消化和降低血压等作用。随着人们对茶叶品质要求的日益提高,需要对不同品种的茶叶实现准确的鉴别分析以防止茶叶市场里茶叶品牌名不副实和以次充好等现象的发生。为实现对茶叶快速精准的鉴别分析,设计了一种综合采用傅里叶近红外光谱和新的模糊极大熵聚类(FEC)分析算法的茶叶品种鉴别系统。传统模糊极大熵聚类分析在聚类含噪声数据时,聚类结果往往容易出现错误,即FEC对噪声数据敏感。为解决这个问题,在FEC分析算法的基础上引入可能C均值聚类分析(PCM),提出了一种混合模糊极大熵聚类(MFEC)分析算法。MFEC可通过迭代计算得到模糊隶属度值,能实现对含噪声的茶叶傅里叶近红外光谱数据的准确聚类分析。首先,使用傅里叶近红外光谱仪(Antaris Ⅱ型)采集岳西翠兰、六安瓜片、施集毛峰三种安徽茶叶的傅里叶近红外光谱数据,光谱波数范围为10 000~4 000 cm-1。其次,对采集到的光谱数据使用多元散射校正(MSC)进行预处理,预处理后先用主成分分析(PCA)将光谱数据维数降至10维,然后再用线性判别分析(LDA)对降维后的近红外光谱数据进行特征提取。最后,通过混合模糊极大熵聚类分析和传统的模糊极大熵聚类分析对三种茶叶的光谱数据进行聚类分析,并对两种聚类分析算法得到的聚类准确率、收敛速度等进行对比分析。实验结果表明:混合模糊极大熵聚类(MFEC)分析算法与传统的模糊极大熵聚类(FEC)分析算法相比较,在相同的权重指数m下MFEC具有更高的聚类准确率。在m=2条件下,MFEC的聚类准确率达到了100%,而传统的模糊极大熵聚类在相同条件下聚类准确率仅为37.98%。MFEC收敛过程中仅需迭代10次即可达到收敛,而FEC需要迭代100次,因此MFEC可以更高效的进行模糊聚类分析,MFEC相比于FEC聚类性能具有明显的优越性。通过傅里叶近红外光谱技术,混合模糊极大熵聚类分析结合PCA与LDA算法构建的茶叶品种鉴别系统能够高效快速的完成对岳西翠兰、六安瓜片、施集毛峰三种茶叶的准确分类,为茶叶检测领域提供了一种创新的方法与设计思路,具有一定的理论价值和良好的市场应用前景。  相似文献   
7.
模糊非相关鉴别C均值聚类的茶叶傅里叶红外光谱分类   总被引:1,自引:0,他引:1  
茶是一种让人喜爱的健康饮品,不同品种的茶叶其功效和作用是不相同的。研究出一种可靠、简单易行、分类速度快的茶叶品种鉴别方法具有重要的意义。在模糊非相关判别转换(FUDT)算法和模糊C均值聚类(FCM)算法的基础上提出了一种模糊非相关鉴别C均值聚类(FUDCM)算法。FUDCM可以在聚类过程中动态提取光谱数据的模糊非相关鉴别信息。用FTIR-7600型傅里叶红外光谱分析仪分别采集优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰三种茶叶的傅里叶中红外光谱,波数范围为4 001.569~401.121 1 cm-1。先用多元散射校正(MSC)进行光谱预处理,然后用主成分分析法(PCA)将光谱数据降维到20维,再利用线性判别分析(LDA)提取光谱数据中的鉴别信息。最后分别运行FCM和FUDCM进行茶叶品种鉴别。实验结果表明:当权重指数m=2时,FCM的聚类准确率为63.64%,FUDCM的聚类准确率为83.33%;FCM经过67次迭代计算实现了收敛,而FUDCM仅需17次迭代计算就可以实现收敛。用傅里叶红外光谱技术结合主成分分析、线性判别分析和FUDCM的方法能快速、有效地实现茶叶品种的鉴别分析,且鉴别准确率比FCM更高。  相似文献   
8.
食品的品种不同则其含有营养成分和功效存在差异,得到的傅里叶变换红外光谱也存在差异。为了准确的实现品种分类,设计了一种将傅里叶变换红外光谱与模糊聚类分析方法相结合的品种鉴别方法。在模糊Kohonen聚类网络(FKCN)基础上将模糊K调和聚类(FKHM)引入到Kohonen聚类网络的学习速率和更新策略中,提出了模糊K-Harmonic-Kohonen网络(FKHKCN)算法。FKHKCN利用模糊C均值(FCM)聚类的模糊隶属度计算其学习速率,以FKHM的聚类中心为基础通过推导计算得到FKHKCN的聚类中心,可以解决模糊Kohonen聚类网络方法对于初始类中心敏感而导致聚类结果不稳定的问题。FKHKCN作为一种模糊聚类算法,可实现傅里叶变换红外光谱数据的聚类分析。采用三种数据集:(1)采集产自四川的三种茶叶(优质和劣质的乐山竹叶青以及峨眉山毛峰)作为实验样本,样本总数为96。(2)两个品种(robusta和arabica)的咖啡样本。(3)三个品种(鸡肉、猪肉和火鸡)的肉类样本。首先对三个光谱数据集进行预处理,利用多元散射校正降低茶叶样本原始光谱数据集的散射影响,使用Savitzky-Gol...  相似文献   
9.
生菜的新鲜程度是影响生菜品质的最重要因素之一,其主要取决于生菜的储藏时间,因此,对不同储藏时间的生菜进行准确鉴别具有重要研究价值。由于不同储藏时间生菜的近红外光谱数据具有差异性的特点,因而使用近红外为不同储藏时间的生菜进行鉴别分类是可行的。通过将联合模糊C均值聚类(allied fuzzy c-means, AFCM)中的欧式距离测度替换为指数距离测度从而提出了一种GG联合模糊聚类(Gath-Geva AFCM, GGAFCM)分析算法。GGAFCM通过迭代计算得到模糊隶属度值和典型值,再结合近红外光谱实现了对不同存储时间生菜的高效精准鉴别。以新鲜的生菜样本作为研究对象,使用傅里叶近红外光谱仪(Antaris Ⅱ型)每隔12 h对生菜样本采集漫反射光谱数据,光谱的波数范围介于10 000~4 000 cm-1之间。首先,通过主成分分析(principal component analysis, PCA)对采集到的1 557维生菜近红外光谱数据进行数据压缩将其降至22维,然后通过模糊线性判别分析(fuzzy linear discriminant analysis, FLDA)对降维后的近红外漫反射光谱数据的鉴别信息进行提取。设定鉴别向量数为2,即通过FLDA将22维的生菜近红外光谱数据转换为了2维数据。最后将模糊C均值聚类(fuzzy c-means, FCM)的聚类中心作为GGAFCM和AFCM的初始聚类中心,通过运行FCM,GGAFCM和AFCM完成对不同储藏时间生菜的鉴别分类,并对三种模糊聚类算法得到的聚类准确率、模糊隶属度、迭代次数进行分析。实验结果表明:在初始化条件相同的情况下,采用的GGAFCM算法与FCM和AFCM算法相比具有更高的鉴别准确率。在m=2的情况下,GGAFCM的鉴别准确率达到了95.56%,而AFCM的聚类准确率为91.11%。GGAFCM迭代4次达到收敛,而AFCM与FCM均需要8次迭代计算才能达到收敛。基于近红外光谱技术,通过GGAFCM结合PCA与FLDA算法可以高效快速且无损的完成对储存时间不同的生菜的准确鉴别分类,为生菜储存时间的准确、快速鉴别提供了实验依据和参考方法,具有一定的实际应用价值。  相似文献   
10.
茶叶是全球最受欢迎饮品之一,且具有丰富的营养价值,但目前市面上的茶叶鱼龙混杂,难以辨别。因此,快速准确的分类方法对茶叶进行鉴别具有重要的研究意义。由于大多数化合物基频吸收带均出现在波长为2 500~25 000 nm的中红外区域,茶叶的中红外光谱中含有大量关于茶叶品种的特征鉴别信息,利用这一显著特点可以对其进行分类。提出模糊协方差学习矢量量化(FCLVQ),该算法在GK(Gustafson-Kessel)聚类的基础上,引入学习向量量化(LVQ)中学习速率的概念,用以控制模糊类中心的更新速率。FCLVQ结合中红外光谱,通过不断迭代计算样本模糊隶属度值和模糊聚类中心,实现对茶叶的快速精准分类。选取市场上的峨眉山茶叶、优质竹叶青茶叶、劣质竹叶青茶叶作为实验对象。将实验对象分为3组(每个品种各1组),每组32个,共计96个样本。利用FTIR-7600型傅里叶红外光谱分析仪分别采集每组样本的中红外光谱数据,每组样本采集三次,取其平均值作为样本的红外光谱数据。首先,由于原始光谱含有噪声数据,故使用多元散射校正(MSC)作降噪预处理;其次,由于光谱数据维数高达1 868维,采用主成分分析(PCA)将...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号