首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
数理化   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 90 毫秒
1
1.
以柠檬酸和组氨酸混合物为碳源采用高温热解法制备组氨酸功能化石墨烯量子点(CH-GQD).CH-GQD是由平均尺寸仅为3.5 nm的石墨烯片组成,片的边缘含有丰富亲水基团,产品极易溶于水,具有强而稳定的荧光发射.将CH-GQD包覆于硅纳米粒子表面得到石墨烯量子点@硅复合物,以此复合物电极为负极、金属锂片为正极装配锂电池,并测试其电化学性能.研究表明,CH-GQD的引入使硅负极的电子转移阻抗下降超过14.7倍,电极与电解质之间的锂离子扩散系数提高310倍,减少了因硅与电解液分子发生副反应造成的储锂容量迅速衰减.CH-GQD@Si电池在50和1000 mA·g-1恒电流下首次放电容量分别是3325和1119 mAh·g-1.在100 mA·g-1电流密度下循环100圈放电容量仍保持1454.4 mAh·g-1.CH-GQD@Si的电池行为明显优于硅负极和柠檬酸和丙氨酸热解产生石墨烯量子点(CA-GQD)改性后的硅负极.由于CH-GQD和CA-GQD在结构上仅相差一个咪唑边缘基团,上述结果还证明咪唑基对提高复合物电极电化学性能发挥了重要作用.  相似文献   
2.
作物病害类型的快速无损检测对提高作物品质和产量至关重要。传统的病害分类方法费时费力且不能实时检测。为此,利用高光谱进行大豆病害分类。以健康大豆为对照,灰斑病和细菌性斑点病两种病害为研究对象,获取三种类别叶片高光谱数据。基于高光谱曲线分析病害与健康叶片反射率的变化规律。采用主成分分析(PCA)和光谱指数(SI)两种单一方法进行病害有效信息提取,共使用30个SI。在此基础上,提出一种PCA与SI相结合的组合方法(PCA-SI),通过提取有效主成分(PC)及有效SI,将有效SI按得分情况分为两组(9SIs和18SIs),再分别对应每一个有效PC进行分组,形成病害光谱有效信息的变量集。采用三种方法分别进行病害有效信息的提取,基于提取后的光谱变量,采用最小二乘支持向量机(LSSVM)和支持向量机(SVM)两种分类器建立病害分类模型。以原始高光谱为基准,以病害分类正确率为指标,评价模型的病害分类性能及不同病害有效信息提取方法和分类器的有效性。结果表明:高光谱反射率具有可见光450~700 nm波段范围病害叶片高于健康叶片而近红外760~1 000 nm波段范围其特征完全相反的规律。采用单一PCA方...  相似文献   
3.
大气中的颗粒物不仅影响人类生活,还影响植物的光合作用、生长发育和产量品质。实现了颗粒物污染环境的人工模拟,并对采收期的小白菜、生菜、小油菜三种叶菜进行颗粒物作用试验,获取叶片的光合生理信息和高光谱数据,基于高光谱技术和植物表型分析叶菜对颗粒物的响应机理,研究叶菜的光合特性和光谱特征对颗粒物污染的响应情况。结果表明:以颗粒物作为唯一差别条件下,三种叶菜叶片的高光谱曲线整体趋势相同,在可见光波段内试验组反射率增加最大,红边位置发生蓝移,小油菜对颗粒物的作用最敏感,小白菜吸附颗粒物的能力最强。分别比较三种叶菜的净光合速率与叶片原始光谱、一阶导数光谱的相关性,利用相关分析法提取三种叶菜的敏感波段,用原始光谱、FD、MSC和相关分析法提取特征波长;比较10个高光谱特征参数及4个植被指数与净光合速率的相关系数,选出敏感光谱特征参数和植被指数,即生菜的Dr,SDr,SDr/SDb和SDr/Sdy,小白菜的SDr,Dy,NIRRP,(SDr-SDy)/(SDr+SDy)以及小油菜的λr,SDy,(SDr-SDy)/(SDr+SDy)。用ln对数运算、多项式函数以及几种组合方法建立三种叶菜叶片的净光合速率定量反演模型,其中,预处理方法采用SG,FD,SD和MSC,建模方法采用CLS,PLS,PCR和SMLR。以相关系数为模型评价指标,最终确定FD+SG+PLS方法是建立生菜和小白菜净光合速率反演模型的最优方法,FD+SG+MSC+SMLR方法是建立小油菜净光合速率反演模型的最优方法。所建模型可为今后颗粒物污染环境下的模型修正提供参考,具有实用性。研究结果为利用高光谱技术研究叶菜类蔬菜在颗粒物污染环境下的诊断与分析提供理论依据,为设施农业蔬菜的病害预警、生理信息监测、设施环境的净化和管控提供新思路。  相似文献   
4.
小麦是我国的主要粮食作物,在国民经济发展中具有举足轻重的地位。然而,盐与物理损伤等非生物胁迫,逐渐成为制约小麦产量和品质的重要因素。研究表明,细胞壁是植物细胞直接抵御逆境胁迫的重要防线。盐胁迫下,细胞渗透压增大,质膜的透性会受到一定程度的影响。为了维持细胞的形态和结构,植物细胞壁中的果胶等多糖物质会发生不同程度的转化和改变。物理损伤,会加深植物细胞膜脂过氧化的程度,使膜通透性增大,导致营养物质的流失和降解。受到损伤的部位及其周边细胞还会发生栓化以阻塞病菌的侵入。构成植物细胞壁主要成分且能够反映细胞壁以及膜系统完整性和透过性的果胶,可以作为研究胁迫下植物内部物质响应规律的重要指标。目前,质量法、比色法、液相色谱法等常用的果胶检测方法操作繁琐、实时性不强且对样本损耗较大。亟需一种操作简便、检测速度快、无损的检测方法。将烟农0428小麦作为研究对象,采用水培方式,以向培养液中施加氯化钠(NaCl)溶液和对小麦第一片叶主脉两侧针刺分别模拟盐胁迫和昆虫叮咬造成的物理损伤,并完成小麦叶片果胶及高光谱信息的采集与处理。利用相关分析法筛选光谱敏感波段,将主成分回归(PCR)、偏最小二乘法(PLS)、逐步多元线性回归(SMLR)三种建模方法分别与多元散射校正(MSC)、标准正态变换(SNV)、一阶导数(FD)、卷积平滑(S-G)、Norris导数滤波(NDF)等预处理技术相结合,建立果胶含量反演模型。最终,选定PLS+SNV+FD+NDF方法建立的模型为最优模型,并对其性能进行了测试。结果表明:果胶含量的预测值与实测值一致性较高,拟合系数(R2)和均方根误差(RMSE)分别为0.997 6和0.35;预测值重复性较好,相对标准偏差(RSD)为1.2%。该研究以新方法实现小麦果胶的高精度、快速、无损检测,有助于小麦响应逆境胁迫机理的深入探索,并为大田作物胁迫程度预测及种植环境的精准管控提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号