首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   19篇
  国内免费   2篇
数理化   29篇
  2024年   4篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有29条查询结果,搜索用时 93 毫秒
1.
饶俊峰  吴施蓉  朱益成  李孜  姜松  王永刚 《强激光与粒子束》2021,33(6):065006-1-065006-10
在针对脉冲电磁场肿瘤消融的应用场合,双极性脉冲比单极性脉冲效果更均匀,而要产生ns级前沿的双极性高压纳秒或亚微秒脉冲难度大,电磁干扰强,控制要求更高。设计了一台双极性全固态直线型变压器驱动源(SSLTD),双极性SSLTD由结构完全相同的LTD模块经过副边绕组反向串联构成,在负载上实现双极性窄脉冲。双极性SSLTD输出波形稳定的脉冲的关键在于磁芯复位,通过电阻负载实验,重点对比分析了复位电流的形式对复位效果的影响,以及采用直流复位时幅值、脉宽、正负脉冲时间间隔、单级模块中开关管并联数量、复位电流大小对双极性SSLTD输出的影响。实验结果表明,所设计的双极性SSLTD能够在500 Ω负载上稳定产生重频双极性纳秒脉冲,输出电压0~±5 kV可调,脉宽200~400 ns可调,正负脉冲时间间隔0~1 ms可调,上升沿和下降沿20~50 ns;反向串联的直流复位电路结构简单、复位效果好。该脉冲源使用模块化设计,结构紧凑,电气绝缘要求较低,可灵活输出双极性、正极性与负极性高压亚微秒脉冲。  相似文献   
2.
焦毅  姜松  王永刚  饶俊峰 《强激光与粒子束》2023,35(5):055002-1-055002-6
随着脉冲功率技术的发展,纳秒脉冲电场被逐渐应用到等离子体水处理、不可逆电穿孔肿瘤消融等技术中。为了满足纳秒脉冲的应用需求,电源需要输出十几kV高压,拥有纳秒窄脉宽和快速的上升沿,同时尽量减小电源体积,降低成本。该纳秒脉冲电源采用电感隔离型Marx发生器结构,电路可以实现模块化叠加,电感隔离可以减少开关数量,抬升充电电压,以获得更高的电压输出。所设计的驱动电路仅需一路控制信号和一个直流供电模块,经功率放大和磁隔离后可同时控制所有放电管,该驱动电路结构简单、成本低、体积小,耐压水平高。所设计的24级电源样机,在50 kΩ阻性负载上,可输出0~14 kV电压,频率0.5~1 kHz,脉宽500 ns。该电源主电路的长宽高尺寸仅为23 cm×10 cm×12 cm。  相似文献   
3.
通过气体放电产生更高浓度的低温等离子体要求具有纳秒上升沿和纳秒脉宽的高重频快脉冲,而目前被广泛使用的MOSFET和IGBT都无法满足这些参数要求,而双极结型晶体管(BJT)的集电极与发射极之间的雪崩击穿过程具有快导通、快恢复、高稳定性等优点,适合作为小型Marx发生器的自击穿开关。文中对用多种型号的BJT进行击穿特性比较测试实验,发现可以通过改变BJT的门极和发射极的并联电阻来调节其雪崩击穿电压,实现一定范围的工作电压。雪崩击穿恢复特性实验表明,当击穿电流衰减到低于维持电流时,BJT就会开始恢复绝缘而关断,通过改变电路中的参数以控制击穿电流的变化就可以控制BJT的雪崩击穿导通时间(即导通脉宽)。将这些结论应用到实际电路中,可获得上升沿5 ns、脉宽为10 ns、幅值2 kV、重复频率高达100 kHz的纳秒快脉冲,可用于激发高浓度低温等离子体。  相似文献   
4.
饶俊峰  李成建  李孜  姜松 《强激光与粒子束》2019,31(3):035001-1-035001-5
设计了一款全固态高重频高压脉冲电源,主电路采用以IGBT为主开关的半桥式固态Marx电路,驱动电路采用磁芯隔离带负压偏置的同步驱动方案,并由FPGA提供充放电控制信号和故障诊断、保护。该方案既可实现对多级电容的低阻抗的快速并联充电控制,又可实现截尾功能以加快脉冲后沿获得方波脉冲,且可实现百μs以上的宽脉冲输出,可用来产生高压脉冲电场。此外,该电源还可在突发模式下输出脉冲个数和频率均可调的多个高频脉冲系列。实验表明,该输出电压幅值可高达40 kV,输出峰值电流可达100 A,重频可达30 kHz,上升沿和下降沿均低于100 ns,突发模式下重频可高达200 kHz。所设计的脉冲电源输出参数连续可调,且体积小巧。  相似文献   
5.
饶俊峰  洪凌锋  郭龙跃  李孜  姜松 《强激光与粒子束》2020,32(5):055001-1-055001-6
脉冲功率技术在工业和生物医学领域有着广泛的应用,很多应用场合要求输出数百安培的高压脉冲。固态Marx发生器虽已研究多年,但是被广泛采用直插封装的IGBT和MOSFET功率半导体开关管的额定电流通常都低于100 A,无法满足低阻抗负载的应用需求。为提高输出脉冲电流幅值,提出两种多路Marx发生器并联的脉冲电源的拓扑结构,第一种方案采用多路Marx发生器直接并联,第二种是共用一组充电开关管的多路Marx发生器并联。由FPGA提供充放电控制信号,采用串芯磁环隔离驱动方案实现带负压偏置的同步驱动,主电路选用开通速度快、通流能力强的IGBT为主开关的半桥式固态方波Marx电路。实验结果表明,6路16级Marx直接并联的脉冲发生器能输出重频100 Hz高压方波脉冲幅值可达10 kV,在30Ω负载侧输出峰值电流可达300 A,上升时间230 ns。共用充电开关管的6路4级Marx并联发生器在5Ω电阻负载上的输出电流峰值可达300 A,最大输出电流可达460 A,上升时间272 ns。表明多路Marx发生器并联可以有效地减小系统内阻,提高系统带载能力;改进后的并联方案实现大电流脉冲输出的同时,所采用的开关管数量减小近一半,提高了系统的抗干扰能力的同时,降低了脉冲电源的成本;且增加级间并联导线可进一步改善均流效果。  相似文献   
6.
姜松  邱力文  饶俊峰  李孜 《强激光与粒子束》2019,31(11):115003-1-115003-8
为得到在生物医疗、器件物理特性等研究方面所需的高压多电平技术,提出了一种新型全固态高压多电平发生器结构。对比传统结构,该结构以更少开关管数量实现相同电平输出,这不仅减少了发生器的整体体积,更节约了成本,优化了系统的电磁兼容。详细阐述了电路的结构设计、工作原理以及阻性负载和容性负载下的控制时序,搭建了一台最大输出11级电平试验样机,实验表明,该高压多电平发生器采用改进型控制时序能够有效消除预脉冲现象,工作频率2 kHz,电压最高幅值±2 kV,能够在阻性和容性负载下稳定工作。  相似文献   
7.
瓜环[n](n=6~8)与盐酸丁咯地尔的相互作用   总被引:3,自引:0,他引:3  
利用1HNMR技术、电喷雾质谱、红外光谱及紫外吸收光谱等手段研究了瓜环[n](n=6~8)与盐酸丁咯地尔的相互作用.实验结果表明,盐酸丁咯地尔与3种瓜环具有不同的相互作用,主-客体配合物的作用模式随着瓜环大小的不同而各不相同.其中,瓜环[6]与盐酸丁咯地尔的相互作用非常弱,而瓜环[7]和瓜环[8]则都将盐酸丁咯地尔分子中的吡咯环及其相邻的2个碳全部包结进去,形成了包结比为1:1的对称包结配合物.通过紫外吸收光谱法计算得到瓜环[7]和瓜环[8]与盐酸丁咯地尔分子的包结常数在102~103L/mol范围内,说明瓜环对盐酸丁咯地尔具有潜在的药物缓释作用.  相似文献   
8.
合成了一个新的二茂铁亚胺环钯化卡宾络合物, 并经过IR, 1H NMR, 13C NMR, HRMS和X射线衍射对其单晶结构进行鉴定. 新合成的催化剂对空气和湿气都很稳定, 并且对氯代苯参与的Buchwald-Hartwig胺化反应有较好的催化活性, 在摩尔分数为0.5%的催化剂用量下, 3 h即可以达到中等以上的收率.  相似文献   
9.
饶俊峰  李恩成  王永刚  姜松  李孜 《强激光与粒子束》2021,33(2):025001-1-025001-7
随着全固态高压脉冲发生器在材料改性、生物医学和工业等领域上的广泛应用,全固态脉冲发生器正朝着小型化、智能化和模块化方向发展。为了进一步减小电源的体积、降低成本,提出了一种自触发驱动的正极性全固态Marx发生器的拓扑。只需提供一路隔离信号控制一级放电开关管的导通和关断,通过级间电容对相邻级的放电管门极自动充电和放电,使其依次导通和关断。这种拓扑使得Marx发生器中的多个开关管的驱动电路简单很多,无需提供隔离供电的多路驱动电源,且避免了开关的动态、静态均压问题。基于这种拓扑搭建了一台17级的正极性Marx发生器样机,且电压幅值和脉宽都连续可调,在10 kΩ纯阻性负载上输出10 kV、重复频率100 Hz的正极性高压脉冲,脉冲前沿约为328 ns。样机体积小巧、工作稳定,验证了该方案的可行性。  相似文献   
10.
利用1H NMR技术、电喷雾质谱、红外光谱以及紫外吸收光谱法等手段研究了瓜环[n](n=7,8)与枸橼酸西地那非的相互作用。结果表明:枸橼酸西地那非与两种瓜环都形成了1∶1的包结配合物,但是其配合物的作用模式随瓜环的大小而不同。通过计算得出瓜环[n](n=7,8)与枸橼酸西地那非的包结常数分别为958和1530 L/mol,说明瓜环对枸橼酸西地那非具有潜在的缓释作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号