首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
数理化   4篇
  2011年   4篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
In this paper,in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs),we demonstrate better performances of recessed-gate Al 2 O 3 MIS-HEMTs which are fabricated by Fluorine-based Si 3 N 4 etching and chlorinebased AlGaN etching with three etching times (15 s,17 s and 19 s).The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT.Through the recessed-gate etching,the transconductance increases effectively.When the recessed-gate depth is 1.02 nm,the best interface performance with τ it =(0.20-1.59) μs and D it =(0.55-1.08)×10 12 cm 2 ·eV 1 can be obtained.After chlorine-based etching,the interface trap density reduces considerably without generating any new type of trap.The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices.By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times,it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.  相似文献   
2.
An enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMTs) was fabricated with 15-nm AlGaN barrier layer. E-mode operation was achieved by using fluorine plasma treatment and post-gate rapid thermal annealing. The thin barrier depletion-HEMTs with a threshold voltage typically around --1.7 V, which is higher than that of the 22-nm barrier depletion-mode HEMTs (--3.5 V). Therefore, the thin barrier is emerging as an excellent candidate to realize the enhancement-mode operation. With 0.6-μ m gate length, the devices treated by fluorine plasma for 150-W RF power at 150 s exhibited a threshold voltage of 1.3 V. The maximum drain current and maximum transconductance are 300 mA/mm, and 177 mS/mm, respectively. Compared with the 22-nm barrier E-mode devices, VT of the thin barrier HEMTs is much more stable under the gate step-stress.  相似文献   
3.
全思  郝跃  马晓华  于惠游 《中国物理 B》2011,20(1):18101-018101
This paper reports fluorine plasma treatment enhancement-mode HEMTs (high electronic mobility transistors) EHEMTs and conventional depletion-mode HEMTs DHEMTs fabricated on one wafer using separate litho-photography technology. It finds that fluorine plasma etches the AlGaN at a slow rate by capacitance--voltage measurement. Using capacitance--frequency measurement, it finds one type of trap in conventional DHEMTs with τT=(0.5-6) ms and DT= (1 - 5) × 1013 cm-2·eV-1. Two types of trap are found in fluorine plasma treatment EHEMTs, fast with τT(f)=(0.2-2) μs and slow with τT(s)=(0.5-6) ms. The density of trap states evaluated on the EHEMTs is DT(f)=(1 - 3) × 1012 cm-2·eV-1 and DT(s)=(2 - 6) × 1012 cm-2·eV-1 for the fast and slow traps, respectively. The result shows that the fluorine plasma treatment reduces the slow trap density by about one order, but introduces a new type of fast trap. The slow trap is suggested to be a surface trap, related to the gate leakage current.  相似文献   
4.
全思  郝跃  马晓华  于惠游 《中国物理 B》2011,20(5):58501-058501
AlGaN/GaN depletion-mode high-electron-mobility transistor(D-HEMT) and fluorine(F) plasma treated enhancement-mode high-electron-mobility transistor(E-HEMT) are exposed to 60Co gamma radiation with a dose of 1.6 Mrad(Si).No degradation is observed in the performance of D-HEMT.However,the maximum transconductance of E-HEMT is increased after radiation.The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement.The electron mobility decreases after fluorine plasma treatment and recovers after radiation.Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices.A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT,but the density of the trap decreases by radiation.Fitting of G p /ω data yields the trap densities D T =(1-3) × 10 12 cm-2 · eV-1 and D T =(0.2 0.8) × 10 12 cm-2 ·eV-1 before and after radiation,respectively.The time constant is 0.5 ms-6 ms.With F plasma treatment,the trap is introduced by etch damage and degrades the electronic mobility.After 60Co gamma radiation,the etch damage decreases and the electron mobility is improved.The gamma radiation can recover the etch damage caused by F plasma treatment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号