首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
文化教育   15篇
  2017年   1篇
  2013年   4篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  1988年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The primary roles for nutrition in sprints are for recovery from training and competition and influencing training adaptations. Sprint success is determined largely by the power-to-mass ratio, so sprinters aim to increase muscle mass and power. However, extra mass that does not increase power may be detrimental. Energy and protein intake are important for increasing muscle mass. If energy balance is maintained, increased mass and strength are possible on a wide range of protein intakes, so energy intake is crucial. Most sprinters likely consume ample protein. The quantity of energy and protein intake necessary for optimal training adaptations depends on the individual athlete and training demands; specific recommendations for all sprinters are, at best, useless, and are potentially harmful. However, if carbohydrate and fat intake are sufficient to maintain energy levels, then increased protein intake is unlikely to be detrimental. The type and timing of protein intake and nutrients ingested concurrently must be considered when designing optimal nutritional strategies for increasing muscle mass and power. On race day, athletes should avoid foods that result in gastrointestinal discomfort, dehydration or sluggishness. Several supplements potentially influence sprint training or performance. Beta-alanine and bicarbonate may be useful as buffering agents in longer sprints. Creatine may be efficacious for increasing muscle mass and strength and perhaps increasing intensity of repeat sprint performance during training.  相似文献   
2.
The aim of the present study was to examine the effect of ingesting 75 g of glucose 45 min before the start of a graded exercise test to exhaustion on the determination of the intensity that elicits maximal fat oxidation (Fatmax). Eleven moderately trained individuals (VO2max: 58.9 +/- 1.0 ml x kg(-1) x min(-1); mean +/- sx), who had fasted overnight, performed two graded exercise tests to exhaustion, one 45 min after ingesting a placebo drink and one 45 min after ingesting 75 g of carbohydrate in the form of glucose. The tests started at 95 W and the workload was increased by 35 W every 3 min. Gas exchange measures and heart rate were recorded throughout exercise. Fat oxidation rates were calculated using stoichiometric equations. Blood samples were collected at rest and at the end of each stage of the test. Maximal fat oxidation rates decreased from 0.46 +/- 0.06 to 0.33 +/- 0.06 g min(-1) when carbohydrate was ingested before the start of exercise (P < 0.01). There was also a decrease in the intensity which elicited maximal fat oxidation (60.1 +/- 1.9% vs 52.0+3.4% VO2max) after carbohydrate ingestion (P < 0.05). Maximal power output was higher in the carbohydrate than in the placebo trial (346 +/- 12 vs 332 +/- 12 W) (P < 0.05). In conclusion, the ingestion of 75 g of carbohydrate 45 min before the onset of exercise decreased Fatmax by 14%, while the maximal rate of fat oxidation decreased by 28%.  相似文献   
3.
In this holistic review of cycling science, the objectives are: (1) to identify the various human and environmental factors that influence cycling power output and velocity; (2) to discuss, with the aid of a schematic model, the often complex interrelationships between these factors; and (3) to suggest future directions for research to help clarify how cycling performance can be optimized, given different race disciplines, environments and riders. Most successful cyclists, irrespective of the race discipline, have a high maximal aerobic power output measured from an incremental test, and an ability to work at relatively high power outputs for long periods. The relationship between these characteristics and inherent physiological factors such as muscle capilliarization and muscle fibre type is complicated by inter-individual differences in selecting cadence for different race conditions. More research is needed on high-class professional riders, since they probably represent the pinnacle of natural selection for, and physiological adaptation to, endurance exercise. Recent advances in mathematical modelling and bicycle-mounted strain gauges, which can measure power directly in races, are starting to help unravel the interrelationships between the various resistive forces on the bicycle (e.g. air and rolling resistance, gravity). Interventions on rider position to optimize aerodynamics should also consider the impact on power output of the rider. All-terrain bicycle (ATB) racing is a neglected discipline in terms of the characterization of power outputs in race conditions and the modelling of the effects of the different design of bicycle frame and components on the magnitude of resistive forces. A direct application of mathematical models of cycling velocity has been in identifying optimal pacing strategies for different race conditions. Such data should, nevertheless, be considered alongside physiological optimization of power output in a race. An even distribution of power output is both physiologically and biophysically optimal for longer ( > 4 km) time-trials held in conditions of unvarying wind and gradient. For shorter races (e.g. a 1 km time-trial), an 'all out' effort from the start is advised to 'save' time during the initial phase that contributes most to total race time and to optimize the contribution of kinetic energy to race velocity. From a biophysical standpoint, the optimum pacing strategy for road time-trials may involve increasing power in headwinds and uphill sections and decreasing power in tailwinds and when travelling downhill. More research, using models and direct power measurement, is needed to elucidate fully how much such a pacing strategy might save time in a real race and how much a variable power output can be tolerated by a rider. The cyclist's diet is a multifactorial issue in itself and many researchers have tried to examine aspects of cycling nutrition (e.g. timing, amount, composition) in isolation. Only recently have researchers attempted to analyse interrelationships between dietary factors (e.g. the link between pre-race and in-race dietary effects on performance). The thermal environment is a mediating factor in choice of diet, since there may be competing interests of replacing lost fluid and depleted glycogen during and after a race. Given the prevalence of stage racing in professional cycling, more research into the influence of nutrition on repeated bouts of exercise performance and training is required.  相似文献   
4.
Abstract

In this holistic review of cycling science, the objectives are: (1) to identify the various human and environmental factors that influence cycling power output and velocity; (2) to discuss, with the aid of a schematic model, the often complex interrelationships between these factors; and (3) to suggest future directions for research to help clarify how cycling performance can be optimized, given different race disciplines, environments and riders. Most successful cyclists, irrespective of the race discipline, have a high maximal aerobic power output measured from an incremental test, and an ability to work at relatively high power outputs for long periods. The relationship between these characteristics and inherent physiological factors such as muscle capilliarization and muscle fibre type is complicated by inter-individual differences in selecting cadence for different race conditions. More research is needed on high-class professional riders, since they probably represent the pinnacle of natural selection for, and physiological adaptation to, endurance exercise. Recent advances in mathematical modelling and bicycle-mounted strain gauges, which can measure power directly in races, are starting to help unravel the interrelationships between the various resistive forces on the bicycle (e.g. air and rolling resistance, gravity). Interventions on rider position to optimize aerodynamics should also consider the impact on power output of the rider. All-terrain bicycle (ATB) racing is a neglected discipline in terms of the characterization of power outputs in race conditions and the modelling of the effects of the different design of bicycle frame and components on the magnitude of resistive forces. A direct application of mathematical models of cycling velocity has been in identifying optimal pacing strategies for different race conditions. Such data should, nevertheless, be considered alongside physiological optimization of power output in a race. An even distribution of power output is both physiologically and biophysically optimal for longer ( >4km) time-trials held in conditions of unvarying wind and gradient. For shorter races (e.g. a 1km time-trial), an‘all out’ effort from the start is advised to‘save’ time during the initial phase that contributes most to total race time and to optimize the contribution of kinetic energy to race velocity. From a biophysical standpoint, the optimum pacing strategy for road time-trials may involve increasing power in headwinds and uphill sections and decreasing power in tailwinds and when travelling downhill. More research, using models and direct power measurement, is needed to elucidate fully how much such a pacing strategy might save time in a real race and how much a variable power output can be tolerated by a rider. The cyclist's diet is a multifactorial issue in itself and many researchers have tried to examine aspects of cycling nutrition (e.g. timing, amount, composition) in isolation. Only recently have researchers attempted to analyse interrelationships between dietary factors (e.g. the link between pre-race and in-race dietary effects on performance). The thermal environment is a mediating factor in choice of diet, since there may be competing interests of replacing lost fluid and depleted glycogen during and after a race. Given the prevalence of stage racing in professional cycling, more research into the influence of nutrition on repeated bouts of exercise performance and training is required.  相似文献   
5.
Abstract

The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   
6.
The aim of the present study was to examine the effect of ingesting 75?g of glucose 45?min before the start of a graded exercise test to exhaustion on the determination of the intensity that elicits maximal fat oxidation (Fatmax). Eleven moderately trained individuals ( V?O2max: 58.9±1.0?ml?·?kg?1?·?min?1; mean±s ), who had fasted overnight, performed two graded exercise tests to exhaustion, one 45?min after ingesting a placebo drink and one 45?min after ingesting 75?g of carbohydrate in the form of glucose. The tests started at 95?W and the workload was increased by 35?W every 3?min. Gas exchange measures and heart rate were recorded throughout exercise. Fat oxidation rates were calculated using stoichiometric equations. Blood samples were collected at rest and at the end of each stage of the test. Maximal fat oxidation rates decreased from 0.46±0.06 to 0.33±0.06?g?·?min?1 when carbohydrate was ingested before the start of exercise (P?<0.01). There was also a decrease in the intensity which elicited maximal fat oxidation (60.1±1.9% vs 52.0±3.4% V?O2max) after carbohydrate ingestion (P?<0.05). Maximal power output was higher in the carbohydrate than in the placebo trial (346±12 vs 332±12?W) (P?<0.05). In conclusion, the ingestion of 75?g of carbohydrate 45?min before the onset of exercise decreased Fatmax by 14%, while the maximal rate of fat oxidation decreased by 28%.  相似文献   
7.
The concept of willingness to communicate (WTC) is established in the United States but less understood elsewhere. This study tests the appropriateness of WTC (McCroskey & Richmond, 1987) in Hong Kong against a background of an increased importance of oral tests which may disadvantage reticent students. The study concludes that the instrument is generally workable in Hong Kong. A preliminary WTC norm is established at 40–45. It also concludes that this norm is low compared to other nationality groups and expresses features that may define a Hong Kong style of oral communication, specifically, a disinclination for dyadic communication.  相似文献   
8.
The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   
9.
Classifying Amharic webnews   总被引:1,自引:1,他引:0  
We present work aimed at compiling an Amharic corpus from the Web and automatically categorizing the texts. Amharic is the second most spoken Semitic language in the World (after Arabic) and used for countrywide communication in Ethiopia. It is highly inflectional and quite dialectally diversified. We discuss the issues of compiling and annotating a corpus of Amharic news articles from the Web. This corpus was then used in three sets of text classification experiments. Working with a less-researched language highlights a number of practical issues that might otherwise receive less attention or go unnoticed. The purpose of the experiments has not primarily been to develop a cutting-edge text classification system for Amharic, but rather to put the spotlight on some of these issues. The first two sets of experiments investigated the use of Self-Organizing Maps (SOMs) for document classification. Testing on small datasets, we first looked at classifying unseen data into 10 predefined categories of news items, and then at clustering it around query content, when taking 16 queries as class labels. The second set of experiments investigated the effect of operations such as stemming and part-of-speech tagging on text classification performance. We compared three representations while constructing classification models based on bagging of decision trees for the 10 predefined news categories. The best accuracy was achieved using the full text as representation. A representation using only the nouns performed almost equally well, confirming the assumption that most of the information required for distinguishing between various categories actually is contained in the nouns, while stemming did not have much effect on the performance of the classifier.
Lemma Nigussie HabteEmail:
  相似文献   
10.
A key goal of pre-exercise nutritional strategies is to maximize carbohydrate stores, thereby minimizing the ergolytic effects of carbohydrate depletion. Increased dietary carbohydrate intake in the days before competition increases muscle glycogen levels and enhances exercise performance in endurance events lasting 90 min or more. Ingestion of carbohydrate 3-4 h before exercise increases liver and muscle glycogen and enhances subsequent endurance exercise performance. The effects of carbohydrate ingestion on blood glucose and free fatty acid concentrations and carbohydrate oxidation during exercise persist for at least 6 h. Although an increase in plasma insulin following carbohydrate ingestion in the hour before exercise inhibits lipolysis and liver glucose output, and can lead to transient hypoglycaemia during subsequent exercise in susceptible individuals, there is no convincing evidence that this is always associated with impaired exercise performance. However, individual experience should inform individual practice. Interventions to increase fat availability before exercise have been shown to reduce carbohydrate utilization during exercise, but do not appear to have ergogenic benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号