首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  国内免费   2篇
地球科学   89篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   9篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   10篇
  2004年   1篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1982年   1篇
排序方式: 共有89条查询结果,搜索用时 0 毫秒
1.
Aiming to study the relationship between Venus surface heights and surface roughness, the Pioneer Venus surface altitude map and map of r.m.s. slope in m-dkm scale have been analy sed for the Beta and Ishtar regions using a system of digital image processing. To integrate the data obtained, the results of geomorphological analysis of Venera 9 and 10 TV panoramas as well as gamma-spectrometric and photometric measurements were used. The analysis gives proof that Venera 9 and 10 landing sites represent geologic-morphologic situations typical of Venus, thus enabling the results of observations made at landing sites to be extended to large provinces. Apparently this conclusion is also applicable to the Venera 8 landing site. No strong relationship exists between the roughness of the surface and its altitude or the amount of a regional slope; neither for the Beta nor for the Ishtar region. A weak direct correlation observable for roughness-altitude pairs for the Beta region and roughness-altitude, roughness-slope pairs for the Ishtar region are quite obviously a consequence of regional roughness control, i.e. of an overall character of geological structure. On Venus the factors contributing to higher surface roughness on the m-dkm scale are, obviously, mostly volcanic and tectonic in their nature whilst those responsible for smoothing-out of the surface are chiefly exogenic. The rate of exogenic transformation of the Cytherean surface may be fairly high. On Venus, similarly as on the Earth, active tectono-magmatic processes have possibly taken place in recent geological epochs. One of the places where they are manifest is an extensive zone running from north to south across the Beta, Phoebe and Themis highlands. Within its limits occur both the process of basaltic shield-type volcanism and areal basalt effusions at low hypsometric levels accounting for the formation of lowland plains at the expense of ancient rolling plains. The basalts of the shield volcano Beta show some differences in composition compared to those of areal effusions at low hypsometric levels. The overall character of Cytherean tectonics in the recent geologic epoch is apparently block-type with a predominance of vertical movements. Against the background of the sinking of some of the blocks the other ones are rising and, possibly, such compensation upheavals have been responsible for the formation of the Ishtar region.  相似文献   
2.
The structure of the Glueckstadt Graben has been investigated by use of 3D gravity backstripping technique and by 2D gravity and magnetic modelling. Subtracting the gravity effects of the Meso-Cenozoic sediments together with Permian salt reveals a positive residual anomaly within the Glueckstadt Graben. This anomaly includes two local maxima over the Westholstein and Eastholstein Troughs. The 2D gravity models point to the presence of a high-density body within the lower crust of the Glueckstadt Graben. In addition, the results of 2D magnetic modelling indicate that the central part of the high-density body is overlain by an area with high susceptibility. Most probable, the formation of this high-density body is a result of complex poly-phase tectonic history of the study area. Finally, the results of gravity modelling indicate that Permian salt is not homogeneous. 3D gravity analysis and, especially, 2D gravity modelling have distinguished the differences in degree of salt saturation in salt-rich bodies, and elucidate the proportion of Rotliegend salt.  相似文献   
3.
Results of the investigation into the geothermal regime of the Fore-Yenisey sedimentary basin, formed during the collision and subsidence of the Kas-Turukhan microcontinent and the western margin of the Siberian craton in the late Neoproterozoic and early Paleozoic are reported. It was established that the structural and geothermal conditions of the upper Precambrian–Paleozoic sections are similar to those in the western regions of the Siberian platform and are characterized by rather low geothermal gradients (12.5–25.5 °С/km). In the western parts of the basin, formation temperatures in the uppermost pre-Jurassic sediments are 50°С–85°С, decreasing eastward to 30°С–55°С. For the first time, the detailed geothermal model of the basin sedimentary fill was developed. This model allows predictions of the geothermal conditions of Earth’s interior.  相似文献   
4.
About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.  相似文献   
5.
Characteristics of the current state of transportation problems along the Northern Sea Route are given. The required ice data necessary to guarantee the safety of navigation are discussed. A variety of developing transportation prospects along the Northern Sea Route, including international aspects, are disputed. Effective economic alternatives of the Northern Sea Route under the conditions of the current Russian economic crisis are analyzed.  相似文献   
6.
Upscaling in seismics is a homogenization of finely layered media in the zero-frequency limit. An upscaling technique for arbitrary anisotropic layers has been developed by Schoenberg and Muir. Applying this technique to a stack of layers of orthorhombic (ORT) symmetry whose vertical symmetry planes are aligned, results in an effective homogeneous layer with orthorhombic symmetry. If the symmetry planes in a horizontal orthorhombic layer are rotated with respect to vertical, the medium is referred to as tilted orthorhombic (TOR) medium, and the stack composed of TOR layers in zero-frequency limit will produce an effective medium of a lower symmetry than orthorhombic. We consider a P-wave that propagates through a stack of thin TOR layers, then it is reflected (preserving the mode) at some interface below the stack, and then propagates back through the same stack. We propose to use a special modified medium for the upscaling in case of this sequential down- and up-propagation: each TOR layer in the stack is replaced by two identical TOR layers whose tilt angles have the opposite algebraic sign. In this modified medium, one-way propagation of a seismic wave (any wave mode) is equivalent to propagation of a pure-mode reflection in the original medium. We apply this idea to study the contribution from an individual layer from the stack and show how the approach can be applied to a stack of TOR layers. To demonstrate the applicability of the model, we use well log data for the upscaling. The model we propose for the upscaling can be used in well-seismic ties to correct the effective parameters obtained from well log data for the presence of tilt, if latter is confirmed by additional measurements (for example, borehole imaging).  相似文献   
7.
We study a nonlinear mechanism for the excitation of kinetic Alfvén waves (KAWs) by fast magneto-acoustic waves (FWs) in the solar atmosphere. Our focus is on the excitation of KAWs that have very small wavelengths in the direction perpendicular to the background magnetic field. Because of their small perpendicular length scales, these waves are very efficient in the energy exchange with plasmas and other waves. We show that the nonlinear coupling of the energy of the finite-amplitude FWs to the small-scale KAWs can be much faster than other dissipation mechanisms for fast wave, such as electron viscous damping, Landau damping, and modulational instability. The nonlinear damping of the FWs due to decay FW = KAW + KAW places a limit on the amplitude of the magnetic field in the fast waves in the solar corona and solar-wind at the level B/B 0∼10−2. In turn, the nonlinearly excited small-scale KAWs undergo strong dissipation due to resistive or Landau damping and can provide coronal and solar-wind heating. The transient coronal heating observed by Yohkoh and SOHO may be produced by the kinetic Alfvén waves that are excited by parametric decay of fast waves propagating from the reconnection sites.  相似文献   
8.
UBVRI polarimetric observations carried out in 1997-2004 for the F-type Asteroids 302 Clarissa, 419 Aurelia, 704 Interamnia, and 762 Pulcova (V band only) are presented. Asteroid 419 Aurelia is characterized by a negative polarization branch which is unusual for low-albedo asteroids. Its depth is about 1%, while the inversion angle, close to 14°, reaches the smallest value ever observed for asteroids. This is the first definite example of a minor body exhibiting a considerable decrease of both the depth and width of the negative polarization branch in comparison with polarization properties of other low-albedo bodies, mimicking a behavior previously found in laboratory measurements of extremely dark surfaces. The F-type Asteroids 302 Clarissa and 704 Interamnia are also characterized by unusually small inversion angles compared to other asteroid types, while Asteroid 762 Pulcova seems to have an ordinary negative polarization branch. Laboratory measurements of low-albedo samples and computer simulations of light scattering by particles of irregular shapes were made to interpret observational data. We find that an optical homogeneity of regolith microstructure at scales of the order of visible light wavelengths may be responsible for relatively small values of the depth of the negative polarization branch and of the inversion angle. Peculiar features of the F-type asteroids compared to other taxonomic classes are discussed.  相似文献   
9.
We present laboratory measurements of the phase dependences of linear polarization for surfaces with a complex microstructure in the range of phase angles 0.1°–3.5° A sample of freshly fallen snow (with particle sizes of about 50 × 500 m) exhibits a nearly zero polarization. Surfaces with submicron structure show a narrow branch of negative polarization at small phase angles, irrespective of whether the surface is powderlike or solid with microcrystalline structure. This polarization is similar to that exhibited by Jupiter's satellites. The negative polarization branch becomes deeper with decreasing porosity of light dielectric surfaces. At the phase angles between 0.5° and 3.0°, the polarization for quartz powder with 10-m particles is almost constant. The polarization for light dielectric surfaces depends on the geometry of illumination and observation. An inclination of the surface in the scattering plane produces a parallel shift of the negative polarization branch toward large values of the polarization modulus. The same inclination in a perpendicular direction produces the same shift toward positive degrees of polarization.  相似文献   
10.
The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号