首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   8篇
  国内免费   15篇
地球科学   206篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   5篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   9篇
  2000年   4篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   4篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1973年   5篇
  1972年   2篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
排序方式: 共有206条查询结果,搜索用时 0 毫秒
1.
The hydrographic observations in the vicinity of a seamount, the Tosa-Bae, southeast of Shikoku have been carried out two times in summer of 1991 and 1992. The temperature, salinity fields are observed by CTD and velocity fields are measured by ADCP. Results of these observation are presented in this paper. It is shown that salinity maximum water at a depth of 100 m is confined to a southeastern are of the Tosa-Bae, however, salinity minimum water is found in northern side of the Tosa-Bae. This indicates the westward intrusion of less saline water over northern slope. A positive correlation is detected between the estimated Rossby height (fL/N) and the observed height of Taylor Column estimated from the vertical change in the isotherms and isohalines. Almost both heights give smaller value than representative depth of bottom topography of the Tosa-Bae, it is indicated that the topographic effect of the Tosa-Bae is not fully reached to the surface. From the correlations between the vertical difference of geostrophic flow and that of ADCP velocity, ageostrophic flow component is detected.  相似文献   
2.
3.
4.
Abstract. For the purpose of development of methane hydrate, occurring in the deep marine subsurface, as a resource, the most important issue is to understand the methane hydrate system (generation, migration and accumulation) as well as to delineate the methane hydrate reservoir properties. We have applied the Amplitude Versus Offset (AVO) analysis to the seismic data acquired in the Nankai Trough, offshore Japan, in order to confirm the occurrence of gas just below the methane hydrate-bearing zone, assuming that gas will show a so-called Class-3 AVO response. Knowledge of the amount and occurrence of gas in the sediment below methane hydrate-bearing zone is one of the keys to understand the methane hydrate system.
We have utilized the qualitative analysis of AVO methodology to delineate how gas is located below the BSR, which is thought to be the reflection event from the interface between the methane hydrate-bearing zone and the underlying gas-bearing zone. In the region of MITI Nankai Trough Well PSW-3, we observe two BSRs separated by 25 ms. After AVO modeling using well data, we applied AVO attribute analysis and attribute crossplot analysis to the seismic data. Finally we applied an offset-amplitude analysis to CMP gather data at specific locations to confirm the results of AVO attribute analysis. The AVO analysis shows that there is very little gas located in the underlying sediment below methane hydrate-bearing zone. This result supports the fact that we could not obtain any clear evidence of gas occurrence just below the methane hydrate-bearing zone in the Nankai Trough well drilling.  相似文献   
5.
A groundwater-monitoring network has been in operation in the Red River Delta, Vietnam, since 1995. Trends in groundwater level (1995?C2009) in 57 wells in the Holocene unconfined aquifer and 63 wells in the Pleistocene confined aquifer were determined by applying the non-parametric Mann-Kendall trend test and Sen??s slope estimator. At each well, 17 time series (e.g. annual, seasonal, monthly), computed from the original data, were analyzed. Analysis of the annual groundwater-level means revealed that 35?% of the wells in the unconfined aquifer showed downward trends, while about 21?% showed upward trends. On the other hand, confined-aquifer groundwater levels experienced downward trends in almost all locations. Spatial distributions of trends indicated that the strongly declining trends (>0.3?m/year) were mainly found in urban areas around Hanoi where there is intensive abstraction of groundwater. Although the trend results for most of the 17 time series at a given well were quite similar, different trend patterns were detected in several. The findings reflect unsustainable groundwater development and the importance of maintaining groundwater monitoring and a database in the Delta, particularly in urban areas.  相似文献   
6.
The reservoir architecture of methane hydrate (MH) bearing turbidite channels in the eastern Nankai Trough, offshore Japan is evaluated using a combination of 3-D seismic and well data. On the 3-D seismic section, the MH-bearing turbidite channels correspond to complex patterns of strong seismic reflectors, which show the 3-D internal architecture of the channel complex. A seismic-sequence stratigraphic analysis reveals that the channel complex can be roughly classified into three different stages of depositional sequence (upper, middle, and lower). Each depositional sequence results in a different depositional system that primarily controls the reservoir architecture of the turbidite channels. To construct a 3-D facies model, the stacking patterns of the turbidite channels are interpreted, and the reservoir heterogeneities of MH-bearing sediments are discussed. The identified channels at the upper sequence around the β1 well exhibit low-sinuosity channels consisting of various channel widths that range from tens to several hundreds of meters. Paleo-current flow directions of the turbidite channels are typically oriented along the north-northeast-to-south-southwest direction. High-amplitude patterns were identified above the channels along the north-to-south and north-northeast-to-south-southeast directions. These roughly coincide with the paleo-current flow of the turbidite channels. An interval velocity using high-density velocity analysis shows that velocity anomalies (>2000 m/s) are found on the northeastern side of the turbidite channels. The depositional stage of the northeastern side of the turbidite channels exhibits slightly older sediment stages than the depositional stages of the remaining channels. Hence, the velocity anomalies of the northeastern side of the channels are related to the different stages of sediment supply, and this may lead to the different reservoir architectures of the turbidite channels.  相似文献   
7.
Vesicomyid bivalves have a substantial biomass in deep-sea chemosynthetic biological communities in the Pacific. Using a novel multiplex-PCR (mPCR) method to identify the co-occurring vesicomyids in Sagami Bay, we analyzed the distribution of Calyptogena okutanii and Calyptogena soyoae along environmental gradients. All the known distributions of C. okutanii indicated the different preferences in salinity and temperature to those of C. soyoae, and in Sagami Bay, depth seemed to be an important environmental factor, too. Although the concentration of hydrogen sulfide in sediment was not examined, our results showed that the distributions of these two Calyptogena clams were affected by salinity and temperature.  相似文献   
8.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   
9.
The possibility of material flows to trace out the magnetic field configuration is examined through numerical simulations. In particular, the evolution of a magnetic arcade due to differential motions of its footpoints is considered. With the use of numerical scheme based on the method of projected characteristics and newly derived proper boundary conditions, it is shown that material flows develop to outline the configuration of evolving magnetic field. Physical implications of the results are discussed.  相似文献   
10.
The pre-Holocene Cenozoic sequence outcrops in the terrestrial part of the eastern margin of the Mekong Basin. However, the stratigraphy of the sequence is still unclear. Its detailed stratigraphy and chronology were therefore studied along the Dong Nai River, southern Vietnam, and the lithofacies and the relations among the formations were investigated from the outcrops. The ages of the deposits were determined by using optically stimulated luminescence (OSL) dating.The Ba Mieu Formation was deposited about 176±52 ka during marine isotope stage (MIS) 7–6. The Thu Duc Formation was deposited about 97±27 ka during MIS 5. Both the Ba Mieu and Thu Duc formations are composed of fluvial and tidally influenced coastal deposits. The newly proposed Nhon Trach Formation was originally an eolian (blanket) deposit, but it has been partly reworked by fluvial processes. The Nhon Trach Formation was deposited about 10.9±4.7 ka, in the last part of the Pleistocene to the beginning of the Holocene. The OSL ages for the Ba Mieu, Thu Duc, and Nhon Trach formations are younger than the ages previously assigned to these formations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号