首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   5篇
地球科学   192篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   13篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有192条查询结果,搜索用时 0 毫秒
1.
2.
The northern Kyushu-Palau Ridge (KPR), remnant conjugate arc of the Izu-Ogasawara (Bonin)-Mariana (IBM) active arc, is dominated by basalt-andesite except for the Komahashi-Daini Seamount where acidic plutonic rocks of 38 Ma were recovered. These mafic to intermediate volcanics are produced by the rifting volcanism in the proto-IBM arc associated with spreading of the Shikoku Basin. The HFSE and HREE contents and ratios of these volcanics indicate enriched source mantle composition compared to recent volcanic front. The LILE ratios exhibit similar characteristics to reararc volcanism of the recent Izu arc, and some enriched volcanics exhibit high abundance of sediment melt inputs. Based on these observations and compilations of the published data set, the replacement event of the wedge mantle under the IBM arc occurred two times. The first event occurred between 45 and 38 Ma, with Pacific type mantle being replaced by depleted Indian type mantle. The second event occurred between 36 and 25 Ma, enriched mantle flowed from reararc side. The slab component during the proto-IBM arc rifting was a similar characteristic to recent reararc volcanism of the Izu arc, and sediment melt added in a local area.  相似文献   
3.
4.
The present paper introduces a genetic algorithm-based optimization technique to calibrate a nonlinear strain hardening–softening constitutive model for soils using five material parameters. The efficiency of the proposed technique is analyzed through the use of different GA techniques. The effects of elitism, crossover, and mutation, as well as population size, on the performance of the conventional GAs for this problem are investigated. Micro-genetic algorithms (mGAs) are chosen and tested for different population sizes. The mGAs with a population size of five yields the optimal parameter values after fewer function evaluations and capture the overall simulated or experimental behavior at every point in stress–strain and strain paths in triaxial compression. The proposed calibration technique is validated through comparison with the traditional calibration technique.  相似文献   
5.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   
6.
We present a theory of filament eruption before the impulsive phase of solar flares. We show that the upward motion of the magnetic X-point tracing the filament eruption begins several minutes before the impulsive phase of the flare, where the explosive magnetic reconnection starts at the X-point magnetic field configuration located under the filament. No change occurs in the character of the motion of the X-point during the onset of the explosive magnetic reconnection. The upward speed of the X-point is about 110 km s-1 at the onset of the impulsive phase. We give an important condition leading to filament eruptions, which relate to the state of the current sheet under the filament, where the magnetic energy can be released.  相似文献   
7.
Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
9.
The depth distributions of the radiolarian fauna in the Chukchi and Beaufort Seas, marginal seas of the western Arctic Ocean, were examined quantitatively in depth-stratified plankton tows from 4 or 5 intervals above 500 m and in surface sediments from various depths between 163 and 2907 m. The radiolarian assemblage from the water column in September 2000 was dominated by Amphimelissa setosa and followed by the Actinomma boreale/leptoderma group, Pseudodictyophimus gracilipes and Spongotrochus glacialis. These species are related to the Arctic Surface Water shallower than 150 m. This assemblage is similar to that in the Greenland Sea relating to the ice edge, but did not contain typical Pacific radiolarians in spite of the flow of water of Pacific origin in this region. The living depth of Ceratocyrtis historicosa was restricted to the relatively warm water between 300 and 500 m corresponding to the upper Arctic Intermediate Water (AIW) originating from the Atlantic Ocean. Radiolarian assemblages in the surface sediments are similar to those in the plankton tows, except for common Cycladophora davisiana in sediment samples below 500 m. C. davisiana is probably a deep-water species adapted to the lower AIW or the Canadian Basin Deep Water ventilated from the shelves.  相似文献   
10.
This study is concerned with the tectono‐thermal history of the Kathmandu nappe and the underlying Lesser Himalayan sediments (LHS) that are distributed in eastern Nepal. We carried out zircon fission‐track(ZFT) dating and obtained 16 ZFT ages from the eastern extension of the Kathmandu nappe, the Higher Himalayan Crystalline, Kuncha nappe, and the Main Central Thrust (MCT) zone. The ZFT ages of the frontal part of the Kathmandu nappe range from 13.0 ±0.8 Ma to 10.7 ±0.7 Ma and exhibit a northward‐younging tendency. These Middle Miocene ZFT ages indicate that the frontal part of the Kathmandu nappe remained at a temperature above 240 °C until the termination of its southward emplacement at 12–11 Ma. The ZFT ages of the LHS range from 11.1 ±0.9 Ma in the southern part of the Okhaldhunga Window to 2.4 ±0.3 Ma of the augen gneiss in the northern margin and also exhibit a northward‐younging age distribution. The ZFT ages show the northward‐younging linear distribution pattern (?0.16 Ma/km) along the across‐strikesection from the frontal part of the Kathmandu nappe to the root zone, without a significant age gap. This distribution pattern indicates that the Kathmandu nappe, the underlying MCT zone, and the Kuncha nappe cooled from the frontal zone to the root zone as a thermally united geologic body at a temperature below 240 °C. An older ZFT age (456.3 ±24.3 Ma), which was partially reset at the axial part of the Midland anticlinorium in the central part of the Okhaldhunga Window, was explained by downward heating from the “hot” Kathmandu nappe. The above evidence supported a model that southward emplacement of the hot Kathmandu nappe resulted in a thermal imprint on the upper part of the LHS; however, the lower part did not reach 240 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号