排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Assessment of Kinetic Energy of Meteoroids Detected by Satellite-Based Light Sensors 总被引:1,自引:0,他引:1
I.V. Nemtchinov V.V. Svetsov I.B. Kosarev A.P. Golub' O.P. Popova V.V. Shuvalov R.E. Spalding C. Jacobs E. Tagliaferri 《Icarus》1997,130(2):259-274
Radiation energies of bright flashes caused by disintegration of large meteoroids in the atmosphere have been measured using optical sensors on board geostationary satellites. Light curves versus time are available for some of the events. We have worked out several numerical techniques to derive the kinetic energy of the meteoroids that produced the flashes. Spectral opacities of vapor of various types of meteoroids were calculated for a wide range of possible temperatures and densities. Coefficients of conversion of kinetic energy to radiation energy were computed for chondritic and iron meteoroids 10 cm to 10 m in size using radiation–hydrodynamics numerical simulations. Luminous efficiency increases with body size and initial velocity. Some analytical approximations are presented for average conversion coefficients for irons and H-chondrites. A mean value of this coefficient for large meteoroids (1–10 m in size) is about 5–10%. The theory was tested by analyzing the light curves of several events in detail.Kinetic energies of impactors and energy–frequency distribution of 51 bolides, detected during 22 months of systematic observations in 1994–1996, are determined using theoretical values of luminous efficiencies and heat-transfer coefficients. The number of impacts in the energy range from 0.25 to 4 kt TNT is 25 per year and per total surface of the Earth.The energy–frequency distribution is in a rather good agreement with that derived from acoustic observations and the lunar crater record. Acoustic systems have registered one 1 Mt event in 12 years of observation. Optical systems have not detected such an event as yet due to a shorter time of observation. The probability of a 1 Mt impact was estimated by extrapolation of the observational data. 相似文献
2.
Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors. 相似文献
3.
Enrico Costa Ronaldo Bellazzini Gianpiero Tagliaferri Giorgio Matt Andrea Argan Primo Attinà Luca Baldini Stefano Basso Alessandro Brez Oberto Citterio Sergio Di Cosimo Vincenzo Cotroneo Sergio Fabiani Marco Feroci Antonella Ferri Luca Latronico Francesco Lazzarotto Massimo Minuti Ennio Morelli Fabio Muleri Lucio Nicolini Giovanni Pareschi Giuseppe Di Persio Michele Pinchera Massimiliano Razzano Luigia Reboa Alda Rubini Antonio Maria Salonico Carmelo Sgro’ Paolo Soffitta Gloria Spandre Daniele Spiga Alessio Trois 《Experimental Astronomy》2010,28(2-3):137-183
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled. 相似文献
4.
This paper deals with the re-assessment of foundation settlements for the Burj Khalifa Tower in Dubai. The foundation system for the tower is a piled raft, founded on deep deposits of calcareous rocks. Two computer programs, Geotechnical Analysis of Raft with Piles (GARP) and Non-linear Analysis of Piled Rafts (NAPRA) have been used for the settlement analyses, and the paper outlines the procedure adopted to re-assess the foundation settlements based on a careful interpretation of load tests on trial piles in which the interaction effects of the pile test set-up are allowed for. The paper then examines the influence of a series of factors on the computed settlements. In order to obtain reasonable estimates of differential settlements within the system, it is found desirable to incorporate the effects of the superstructure stiffness which act to increase the stiffness of the overall foundation system. Values of average and differential settlements for the piled raft calculated with GARP and NAPRA were found to be in reasonable agreement with measured data on settlements taken near the end of construction of the tower. 相似文献
5.
Gianpiero Russo 《Acta Geotechnica》2013,8(1):17-31
The paper presents experimental results of two Osterberg’s cell load tests (OLTs) and three conventional load tests (COLTs) in the same subsoil conditions on Continuous Flight Auger (CFA) piles carefully monitored during construction stages. The instrumentation along the pile shaft in all the tests allows interesting comparisons of both global behaviour and local load transfer. Significant differences in the stiffness of the soil-pile system with the different test procedures is outlined. The main differences between the two test procedures occur at the two opposite ends of the pile, as could have been expected, while the observed behaviour in the middle part of the tested piles is close for the two models. A relatively simple FEM model has been calibrated on the basis of the OLTs results. The same model is capable of accurately matching the experimental results of the COLTs, proving that the observed differences are not due to random factors. Furthermore, the same model has been used to simulate ideal load tests. Such a reliable simulation shows that both the experimental procedures are actually responsible for significant differences in the behaviour of the soil-pile system even in the simple case of a concentrated axial load. Large differences arise in terms of the stiffness of the system with the OLTs providing by far the stiffest response. Despite being intermediate between the OLT and the ILT, the COLTs provide a response of the pile-soil system, which is on the average about two times stiffer than the Ideal test, where the force applied on top of the pile does not depend on a tangible reaction system. Care should be thus taken when considering the results of such tests in the prediction of the settlement of a piled foundation. Correction factors should be applied to the experimentally observed behaviour. 相似文献
6.
Peter G. Brown Douglas O. ReVelle Edward Tagliaferri Alan R. Hildebrand 《Meteoritics & planetary science》2002,37(5):661-675
Abstract— We present instrumental observations of the Tagish Lake fireball and interpret the observed characteristics in the context of two different models of ablation. From these models we estimate the pre‐atmospheric mass of the Tagish Lake meteoroid to be ?56 tonnes and its porosity to be between 37 and 58%, with the lowest part of this range most probable. These models further suggest that some 1300 kg of gram‐sized or larger Tagish Lake material survived ablation to reach the Earth's surface, representing an ablation loss of 97% for the fireball. Satellite recordings of the Tagish Lake fireball indicate that 1.1 times 1012 J of optical energy were emitted by the fireball during the last 4 s of its flight. The fraction of the total kinetic energy converted to light in the satellite pass band is found to be 16%. Infrasonic observations of the airwave associated with the fireball establish a total energy for the event of 1.66 ± 0.70 kT TNT equivalent energy. The fraction of this total energy converted to acoustic signal energy is found to be between 0.10 and 0.23%. Examination of the seismic recordings of the airwave from Tagish Lake have established that the acoustic energy near the sub‐terminal point is converted to seismic body waves in the upper‐most portion of the Earth's crust. The acoustic energy to seismic energy coupling efficiency is found to be near 10?6 for the Tagish Lake fireball. The resulting energy estimate is near 1.7 kT, corresponding to a meteoroid 4 m in diameter. The seismic record indicates extensive, nearly continuous fragmentation of the body over the height intervals from 50 to 32 km. Seismic and infrasound energy estimates are in close agreement with the pre‐atmospheric mass of 56 tonnes established from the modeling. The observed flight characteristics of the Tagish Lake fireball indicate that the bulk compressive strength of the pre‐atmospheric Tagish Lake meteoroid was near 0.25 MPa, while the material compressive strength (most appropriate to the recovered meteorites) was closer to 0.7 MPa. These are much lower than values found for fireballs of ordinary chondritic composition. The behavior of the Tagish Lake fireball suggests that it represents the lowest end of the strength spectrum of carbonaceous chondrites or the high end of cometary meteoroids. The bulk density and porosity results for the Tagish Lake meteoroid suggest that the low bulk densities measured for some small primitive bodies in the solar system may reflect physical structure dominated by microporosity rather than macroporosity and rubble‐pile assemblages. 相似文献
7.
On February 1, 1994, a large meteoroid impacted over the Pacific Ocean at 2.6° N, 164.1° E. The impact was observed by space based IR sensors operated by the US Department of Defense and by visible wavelength sensors operated by the US Department of Energy. During entry the object broke into several pieces, one of which detonated at 34 km and another at 21 km altitude. The entry velocity of the object is estimated to be 24–25 km/sec. Based on the visible wavelength data, the integrated intensity of the radiated energy of the fireball was approximately 1.3 × 1013 joules. Assuming a 6000 K black body and a 30% efficiency for the conversion of the kinetic energy of the body into visible light, we estimate the mass of the body to be between 1.6×105 kg and 4.4×106 kg, and to have a diameter of between 4.4 and 13.5 meters. The object entered at a 45° angle, traveling on a heading of approximately 300°, i.e. from the southeast to the northwest. Calculations using a gross-fragmentation model indicate that the body was most likely a stony object larger than 10 m with an Apollo orbit prior to impact.E T Space SystemsSandia National LaboratoriesOndejov Observatory 相似文献
8.
Patricija Mozetič Cosimo Solidoro Gianpiero Cossarini Giorgio Socal Robert Precali Janja Francé Franco Bianchi Cinzia De Vittor Nenad Smodlaka Serena Fonda Umani 《Estuaries and Coasts》2010,33(2):362-375
The results of the updated and quality-checked data base of field observations on chlorophyll a (Chl a) collected in the period 1970–2007 in the Northern Adriatic Sea are presented. From the last decade, SeaWiFS satellite information
was also considered. Results demonstrate a global tendency towards Chl a reduction in the period of investigation, which is more marked in the eutrophic area under the influence of the Po River.
In the rest of the basin, which presents meso- or oligotrophic characteristics, long-term changes are more difficult to detect.
The long-term field dataset can be divided into two periods: the last decade characterized by the strong decrease observed
in the whole northern Adriatic and the earlier period with no or slight increase. The recent substantial reduction of Chl
a concentrations is confirmed all over the basin (−0.11 mg m−3 year−1) from satellite-derived information. Results are consistent with recently evidenced decrease in concentrations of phosphate
and ammonia and point to the existence of oligotrophication in the Northern Adriatic. Results indicate forcefully that the
still common perception of the Adriatic Sea as a very eutrophic basin is no longer appropriate, at least for its northern
part and in recent years. 相似文献
9.
Alan R. Hildebrand Phil J. A. McCausland Peter G. Brown Fred J. Longstaffe Sam D. J. Russell Edward Tagliaferri John F. Wacker Michael J. Mazur 《Meteoritics & planetary science》2006,41(3):407-431
Abstract— The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000, delivered ?10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper, we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments from a strewnfield at least 16 km long and 3 to 4 km wide. Nearly 1 kg of “pristine” meteorites were collected one week after the fall before new snow covered the strewnfield; the majority of the recovered mass was collected during the spring melt. Ground eyewitnesses and a variety of instrument‐recorded observations of the Tagish Lake fireball provide a refined estimate of the fireball trajectory. From its calculated orbit and its similarity to the remotely sensed properties of the D‐ and P‐class asteroids, the Tagish Lake carbonaceous chondrite apparently represents these outer belt asteroids. The cosmogenic nuclide results and modeled production indicate a prefall radius of 2.1–2.4 m (corresponding to 60–90 tons) consistent with the observed fireball energy release. The bulk oxygen‐isotope compositions plot just below the terrestrial fractionation line (TFL), following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.64 ± 0.02 g/cm3) is the same, within uncertainty, as the total bulk densities of several C‐class and especially D‐ and P‐class asteroids. The high microporosity of Tagish Lake samples (?40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids. 相似文献
10.