首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
数理化   2篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
It has been demonstrated that type-2 fuzzy logic systems are much more powerful tools than ordinary (type-1) fuzzy logic systems to represent highly nonlinear and/or uncertain systems. As a consequence, type-2 fuzzy logic systems have been applied in various areas especially in control system design and modelling. In this study, an exact inversion methodology is developed for decomposable interval type-2 fuzzy logic system. In this context, the decomposition property is extended and generalized to interval type-2 fuzzy logic sets. Based on this property, the interval type-2 fuzzy logic system is decomposed into several interval type-2 fuzzy logic subsystems under a certain condition on the input space of the fuzzy logic system. Then, the analytical formulation of the inverse interval type-2 fuzzy logic subsystem output is explicitly driven for certain switching points of the Karnik–Mendel type reduction method. The proposed exact inversion methodology driven for the interval type-2 fuzzy logic subsystem is generalized to the overall interval type-2 fuzzy logic system via the decomposition property. In order to demonstrate the feasibility of the proposed methodology, a simulation study is given where the beneficial sides of the proposed exact inversion methodology are shown clearly.  相似文献   
2.
In this study, a new centroid type reduction method is proposed for piecewise linear interval type-2 fuzzy sets based on geometrical approach. The main idea behind the proposed method relies on the assumption that the part of footprint of uncertainty (FOU) of an interval type-2 fuzzy set (IT2FS) has a constant width where the centroid is searched. This constant width assumption provides a way to calculate the centroid of an IT2FS in closed form by using derivative based optimization without any need of iterations. When the related part of FOU is originally constant width, the proposed method finds the accurate centroid of an IT2FS; otherwise, an enhancement can be performed in the algorithm in order to minimize the error between the accurate and the calculated centroids. Moreover, only analytical formulas are used in the proposed method utilizing geometry. This eliminates the need of using discretization of an IT2FS for the type reduction process which in return naturally improves the accuracy and the computation time. The proposed method is compared with Enhanced Karnik–Mendel Iterative Procedure (EKMIP) in terms of the accuracy and the computation time on seven test fuzzy sets. The results show that the proposed method provides more accurate results with shorter computation time than EKMIP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号