首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12755篇
  免费   389篇
  国内免费   104篇
数理化   13248篇
  2023年   83篇
  2022年   142篇
  2021年   216篇
  2020年   238篇
  2019年   266篇
  2018年   177篇
  2017年   177篇
  2016年   425篇
  2015年   317篇
  2014年   358篇
  2013年   707篇
  2012年   689篇
  2011年   742篇
  2010年   507篇
  2009年   450篇
  2008年   671篇
  2007年   721篇
  2006年   594篇
  2005年   639篇
  2004年   532篇
  2003年   422篇
  2002年   390篇
  2001年   193篇
  2000年   172篇
  1999年   113篇
  1998年   122篇
  1997年   129篇
  1996年   157篇
  1995年   126篇
  1994年   107篇
  1993年   125篇
  1992年   109篇
  1991年   102篇
  1990年   94篇
  1989年   83篇
  1988年   69篇
  1987年   74篇
  1986年   91篇
  1985年   136篇
  1984年   135篇
  1983年   96篇
  1982年   108篇
  1981年   100篇
  1980年   111篇
  1979年   103篇
  1978年   101篇
  1977年   83篇
  1976年   88篇
  1975年   93篇
  1974年   89篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
The title structures of KScS2 (potassium scandium sulfide), RbScS2 (rubidium scandium sulfide) and KLnS2 [Ln = Nd (potassium neodymium sufide), Sm (potassium samarium sulfide), Tb (potassium terbium sulfide), Dy (potassium dysprosium sulfide), Ho (potassium holmium sulfide), Er (potassium erbium sulfide), Tm (potassium thulium sulfide) and Yb (potassium ytterbium sulfide)] are either newly determined (KScS2, RbScS2 and KTbS2) or redetermined. All of them belong to the α‐NaFeO2 structure type in agreement with the ratio of the ionic radii r3+/r+. KScS2, the member of this structural family with the smallest trivalent cation, is an extreme representative of these structures with rare earth trivalent cations. The title structures are compared with isostructural alkali rare earth sulfides in plots showing the dependence of several relevant parameters on the trivalent cation crystal radius; the parameters thus compared are c, a and c/a, the thicknesses of the S—S layers which contain the respective constituent cations, the sulfur fractional coordinates z(S2−) and the bond‐valence sums.  相似文献   
5.
6.
7.
8.
9.
The traditional chemical industry has become a largely mature industry with many commodity products based on established technologies. Therefore, new product and market opportunities will more likely come from speciality chemicals, and from new functionalities obtained from new processing technologies as well as new microstructure control methodologies. It is a well-known fact that in addition to its molecular structure, the microstructure of a material is key to determining its properties. Controlling structures at the micro- and nano-levels is therefore essential to new discoveries. For this article, we define nanotechnology as the controlled manipulation of nanomaterials with at least one dimension less than 100nm. Nanotechnology is emerging as one of the principal areas of investigation that is integrating chemistry and materials science, and in some cases integrating these with biology to create new and yet undiscovered properties that can be exploited to gain new market opportunities. In this article market opportunities for nanotechnology will be presented from an industrial perspective covering electronic, biomedical, performance materials, and consumer products. Manufacturing technology challenges will be identified, including operations ranging from particle formation, coating, dispersion, to characterization, modeling, and simulation. Finally, a nanotechnology innovation roadmap is proposed wherein the interplay between the development of nanoscale building blocks, product design, process design, and value chain integration is identified. A suggestion is made for an R&D model combining market pull and technology push as a way to quickly exploit the advantages in nanotechnology and translate these into customer benefits.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号