首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   6篇
  国内免费   1篇
环境安全   251篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   21篇
  2012年   12篇
  2011年   9篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   12篇
  2006年   14篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   9篇
  2001年   10篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1934年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
1.
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993–2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites.Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999–2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.  相似文献   
2.
Ambio - Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although...  相似文献   
3.
Challenges in quantifying biosphere-atmosphere exchange of nitrogen species   总被引:2,自引:0,他引:2  
Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N(2) fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N(2)O, NO and bi-directional NH(3) exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols.  相似文献   
4.
Landscape approaches attempt to achieve balance amongst multiple goals over long time periods and to adapt to changing conditions. We review project reports and the literature on integrated landscape approaches, and found a lack of documented studies of their long-term effectiveness. The combination of multiple and potentially changing goals presents problems for the conventional measures of impact. We propose more critical use of theories of change and measures of process and progress to complement the conventional impact assessments. Theories of change make the links between project deliverables, outputs, outcomes, and impacts explicit, and allow a full exploration of the landscape context. Landscape approaches are long-term engagements, but short-term process metrics are needed to confirm that progress is being made in negotiation of goals, meaningful stakeholder engagement, existence of connections to policy processes, and effectiveness of governance. Long-term impact metrics are needed to assess progress on achieving landscapes that deliver multiple societal benefits, including conservation, production, and livelihood benefits. Generic criteria for process are proposed, but impact metrics will be highly situation specific and must be derived from an effective process and a credible theory of change.  相似文献   
5.
In order to decide on a suitable sampling depth for grassland soil treated with sewage sludge and to assess implications for grazing animals, a field trial on two soils was designed to estimate the distribution of metals in grassland soil profiles following surface applications of sludge. Thus the sites represented permanent grassland where no form of cultivation had taken place. Soil cores were taken using specialised equipment to 30 cm depth and divided into seven sections. Movement from the soil surface to a depth of 10 cm was observed for all of the seven metals, Cd, Cr, Cu, Mo, Ni, Pb and Zn, but most of the metal (60%-100%, mean 87%) remained in the upper 5 cm of soil. It was concluded that sampling to a depth of 5 or 7.5 cm would be most suitable for monitoring long-term grassland treated with surface applications of sludge.  相似文献   
6.
Sawmill workers in British Columbia (B.C.), Canada, have been exposed to chlorophenate fungicides which are known to be contaminated with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Due to concern about the potential of these workers to have significant body burdens of PCDD/Fs, and the absence of measurements in these worker, a single-compartment pharmacokinetic model was developed to estimate the concentration of PCDD/Fs in the fat tissue of the sawmill workers. Data from a large cohort of B.C. sawmill workers and literature-based data on chlorophenate exposures and PCDD/F concentrations in chlorophenates were used in Monte Carlo simulations to predict a PCDD/F body burden distribution. The median concentrations of HxCDF and HpCDF predicted using the model for the B.C. sawmill worker population exceeded the range measured in unexposed populations. PeCDF and OCDF concentrations exceeded the range measured in unexposed populations at the 70th percentile of the model-predicted distribution, and PeCDD at the 90th percentile. The primary limitation of the model was the scarcity of input data about actual dermal and inhalation exposures to chlorophenates.  相似文献   
7.
Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air–sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01658-z.  相似文献   
8.
Environmental Science and Pollution Research - The scientific knowledge produced by academic research can be valued in all sectors of human activity, including private sector. The ROVALTAIN...  相似文献   
9.
The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and degradation product) subsurface movement.  相似文献   
10.
Abstract

The research objective was to adapt the ultraviolet (UV)photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 22 factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 °C occurred at pH 2.0 with a 24-hr irradiance period at concentrations < µM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4 +), but urea released a near equimolar ratio of NH4 + and nitrate (NO3 ?). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 ± 29.2 nmol-Nm?3and 8.3 ± 4.9 nmol-Nm?3, respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 ± 5.7%, and the majority of the DON (79.1 ± 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 ± 25.6 nmol-Nm?3 and 6.5 ± 4.4 nmol-Nm?3, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号