首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   3篇
工业技术   90篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
In optical microscopic measurement of internal blood-vessel diameters, the effect of refraction must be taken into account to ensure accuracy of the result. This effect is discussed and an analytical correction formula derived. Phantom blood vessels with known internal and external diameters were used to test the validity of the correction formula. The errors obtained prior to correction were reduced significantly after correction.  相似文献   
2.
Dynamic tank in series modeling of direct internal reforming SOFC   总被引:1,自引:0,他引:1       下载免费PDF全文
A dynamic tank in series reactor model of a direct internally reforming solid oxide fuel cell is presented and validated using experimental data as well as a computational fluid dynamics (CFD) model for the spatial profiles. The effect of the flow distribution pattern at the inlet manifold on the cell performance is studied with this model. The tank in series reactor model provides a reasonable understanding of the spatio‐temporal distribution of the key parameters at a much lesser computational cost when compared to CFD methods. The predicted V–I curves agree well with the experimental data at different inlet flows and temperatures, with a difference of less than ±1.5%. In addition, comparison of the steady‐state results with two‐dimensional contours from a CFD model demonstrates the success of the adopted approach of adjusting the flow distribution pattern at the inlet boundaries of different continuous stirred tank reactor compartments. The spatial variation of the temperature of the PEN structure is captured along with the distributions of the current density and the anode activation over‐potential that strongly related to the temperature as well as the species molar fractions. It is found that, under the influence of the flow distribution pattern and reaction rates, the dynamic responses to step changes in voltage (from 0.819 to 0.84 V), fuel flow (15%) and temperature changes (30 °C), on anode side and on cathode side, highly depend on the spatial locations in the cell. In general, the inlet points attain steady state rapidly compared to other regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
3.
Density functional theory and polarizable continuum model are used to calculate ionization potential of thin-films of 12 organic molecules. Computed values are compared with experimental values obtained from ultraviolet photoemission spectroscopy. The excellent correlation shows that it is possible to determine the ionization potential of organic molecules in solid-state within ±0.15 eV of the experimental value. This method is useful for chemists in designing molecules for organic electronics.  相似文献   
4.
The rapid lifetime determination method (RLD) is a mathematical technique for extremely rapid evaluations of lifetimes in exponential decays. It has been applied in luminescence microscopy and single-molecule lifetime evaluation. To date, the primary application has been in single-exponential evaluations. We present extensions of the method to double exponentials. Using Monte Carlo simulations, we assess the performance of both the double-exponential decay with known lifetimes and the double-exponential decay with unknown preexponential factors and lifetimes. Precision is evaluated as a function of the noise level (Poisson statistics), the ratios of the lifetimes, the ratios of their preexponential factors, and the fitting window. Optimum measurement conditions are determined. RLD is shown to work well over a wide range of practical experimental conditions. If the lifetimes are known, the preexponential factors can be determined with good precision even at low total counts (10(4)). With unknown preexponential factors and lifetimes, precisions decrease but are still acceptable. A new gating scheme (overlapped gating) is shown to offer improved precision for the case of a single-exponential decay. Theoretical predictions are tested against actual experimental data from a laser-based lifetime instrument.  相似文献   
5.
The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania‐chitosan‐chondroitin 4–sulphate nanocomposites of three different concentrations (2:1:x, where x ‐ 0.125, 0.25, 0.5) have been synthesised by in situ sol–gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30–50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG‐63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.Inspec keywords: titanium compounds, filled polymers, nanocomposites, bone, orthopaedics, biomedical materials, sol‐gel processing, nanofabrication, particle size, swelling, microorganisms, cellular biophysics, nanomedicine, prostheticsOther keywords: in situ synthesised TiO2 ‐chitosan‐chondroitin 4‐sulphate nanocomposites, bone implant applications, artificial materials, in situ sol‐gel method, particle size, swelling nature, antimicrobial nature, microorganisms, Staphylococcus aureus, Escherichia coli, cell viability, MG‐63, biomaterial, size 30 nm to 50 nm, TiO2   相似文献   
6.
Minimising the thermal gradients is extremely important in a planar solid oxide fuel cell (SOFC) for improving the cell life. The estimation of the temperature distribution in the cell is necessary to achieve this objective through suitable control, since they are not generally measurable. In this work, we have designed a non-linear adaptive observer for estimating the temperatures inside the hydrogen fed planar SOFC. The observer design is based on a lumped parameter model of the SOFC. The stability of the proposed observer is proven using the Lyapunov function method and is based on the concept of input-to-state stability for cascaded systems. The simulations show that the developed observer can track the temperature and species concentration profiles in the planar SOFC during step changes in the cell current. The adaptive observer presented is valid for a wide operating range, requires fewer variables to be measured, and is robust to fluctuations in the inlet flows.  相似文献   
7.
BACKGROUND: The proteases are among the most important groups of enzymes. Therefore, it is important to produce inexpensive and optimized media for large‐scale commercial production. In the present work, three different Shewanella species were screened on skim milk agar medium for their ability to produce alkaline protease. The effects of different culture conditions were optimized for alkaline protease production by S. oneidensis MR‐1 using a Box–Behnken design combined with response surface methodology (RSM). RESULTS: Highest yield (112.90 U mL?1) of protease production was obtained at pH 9.0, a temperature of 30 °C, glucose (12.5 g L?1), tryptone (12.5 g L?1) and an incubation period of 36 h. A second‐order polynomial regression model was used for analysis of the experiment. The experimental values were in good agreement with predicted values, with correlation coefficient 0.9996. CONCLUSION: Carbon and nitrogen, pH, temperature and incubation period were chosen as the main factors to be used in an experimental design for optimization to produce low‐cost enzymes, potentially for use on an industrial scale. A 60% increase in enzyme activity was achieved in the optimized medium compared with the original medium. Copyright © 2008 Society of Chemical Industry  相似文献   
8.
9.
The ability to predict how far a drug will penetrate into the tumour microenvironment within its pharmacokinetic (PK) lifespan would provide valuable information about therapeutic response. As the PK profile is directly related to the route and schedule of drug administration, an in silico tool that can predict the drug administration schedule that results in optimal drug delivery to tumours would streamline clinical trial design. This paper investigates the application of mathematical and computational modelling techniques to help improve our understanding of the fundamental mechanisms underlying drug delivery, and compares the performance of a simple model with more complex approaches. Three models of drug transport are developed, all based on the same drug binding model and parametrized by bespoke in vitro experiments. Their predictions, compared for a ‘tumour cord’ geometry, are qualitatively and quantitatively similar. We assess the effect of varying the PK profile of the supplied drug, and the binding affinity of the drug to tumour cells, on the concentration of drug reaching cells and the accumulated exposure of cells to drug at arbitrary distances from a supplying blood vessel. This is a contribution towards developing a useful drug transport modelling tool for informing strategies for the treatment of tumour cells which are ‘pharmacokinetically resistant’ to chemotherapeutic strategies.  相似文献   
10.
The reaction kinetics of ZrN and HfN immersed in a quaternary salt of composition of 28.5% LiCl-36.3% KCl-29.4% NaCl-5.8% UCl3 (in weight percent) were assessed. Coupons of ZrN and HfN were exposed to the quaternary salt at 525-900 °C for 4-485 h. The reaction kinetics of the salt-refractory interactions were assessed through physical and microstructural characterization including scanning electron microscopy, X-ray diffraction and mass spectrometry. The results indicated that ZrN and HfN lose weight under all conditions investigated. While multiple mechanisms were evident, it is proposed that dissolution and oxidation were the dominant reactions that influence the weight loss. For the overall reaction, negative apparent activation energy values of −46 and −28 kJ/mol were observed in ZrN and HfN, respectively. These seemingly anomalous activation energies were associated with the simultaneous occurrence of electrochemical dissolution and surface oxide formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号