首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   235篇
  国内免费   2篇
工业技术   2265篇
  2024年   4篇
  2023年   35篇
  2022年   77篇
  2021年   122篇
  2020年   70篇
  2019年   78篇
  2018年   86篇
  2017年   102篇
  2016年   115篇
  2015年   99篇
  2014年   144篇
  2013年   133篇
  2012年   161篇
  2011年   199篇
  2010年   155篇
  2009年   119篇
  2008年   112篇
  2007年   75篇
  2006年   55篇
  2005年   64篇
  2004年   51篇
  2003年   41篇
  2002年   25篇
  2001年   16篇
  2000年   15篇
  1999年   12篇
  1998年   14篇
  1997年   20篇
  1996年   12篇
  1995年   8篇
  1994年   12篇
  1993年   7篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1970年   1篇
排序方式: 共有2265条查询结果,搜索用时 0 毫秒
1.
The transmission mode of holographic polymer‐dispersed liquid crystals (HPDLCs) was developed an under electric field. It is reported that orientation of LC molecules under an electric field induces orientation of oligomer molecules giving rise to low off‐state diffraction and small grating shrinkage. Copyright © 2005 Society of Chemical Industry  相似文献   
2.
In polyolefin processes the melt index (MI) is the most important control variable indicating product quality. Because of the difficulty in the on-line measurement of MI, a lot of MI estimation and correlation methods have been proposed. In this work a new dynamic MI estimation scheme is developed based on system identification techniques. The empirical MI estimation equation proposed in the present study is derived from the 1 st -order dynamic models. Effectiveness of the present estimation scheme was illustrated by numerical simulations based on plant operation data including grade change operations in high density polyethylene (HDPE) processes. From the comparisons with other estimation methods it was found that the proposed estimation scheme showed better performance in MI predictions. The virtual sensor model developed based on the estimation scheme was combined with the virtual on-line analyzer (VOA) to give a quality control system to be implemented in the actual HDPE plant. From the application of the present control system, significant reduction of transition time and the amount of off-spec during grade changes was achieved  相似文献   
3.
We propose an asymmetric integral imaging method to adjust the resolution and depth of a three‐dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one‐dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.  相似文献   
4.
Silicone rubber (SR) foams were prepared by the peroxide curing of a silicone compound with 2,4‐dichlorobenzoyl peroxide (DCBP), di‐t‐butyl peroxide (DTBP), or 2,5‐dimethyl‐2,5‐di(t‐butylperoxy) hexane (DBPH) in the presence of 2,2′‐azobisisobutyronitrile (AIBN) as a blowing agent. The cells were formed in the foam as a result of nitrogen produced by the decomposition of AIBN during the foaming process. The cell size, hardness, and tensile properties of the SR foams were examined as a function of the peroxide concentration. When the peroxide concentration increased, the hardness and tensile strength of the SR foams increased, whereas the cell size and elongation at break decreased. The antibacterial activity of the prepared foams was also evaluated via their effects on Staphylococcus aureus and Escherichia coli. The peroxide‐cured SR foams had antibacterial activity because a toxic residue was generated by the peroxide decomposition. The foam prepared by the AIBN/DCBP system showed more antibacterial activity than the AIBN/DBPH and AIBN/DTBP ones. However, after postcuring at 250°C for 2 h, the antibacterial activity of the SR foams significantly decreased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
5.
The drawability of iodinated at solution before casting (IBC) polyvinyl alcohol films prepared by casting aqueous solutions of 10 wt % PVA containing 15.2, 39.8, 83.2, 117.0, and 140.1% was examined with a tensile tester at 20–60°C. The tensile behavior of IBC films showed that the yield and breaking loads were much lower, and the breaking elongation was even higher than those of the unoriented iodinated after casting (IAC) films as well as the untreated PVA films. The maximum draw ratios of the films with the weight gain of 15.2, 39.8, 83.2, 117, and 140.1% were 4.5, 5.5, 8.5, 8.0, and 7.5, respectively, which were achieved at 20°C in all. The crystallinity of all films increased by the maximum draw, regardless of crystallinity before drawing. The crystalline structure was recovered to the original PVA crystalline lattice by deiodination. Amorphous orientation and initial moduli increased with the maximum draw ratio, while the orientation of crystals was constant. The orientation and moduli increased up to the weight gain of 83.2%, whose highest draw ratio and initial modulus were 8.5 and of 7.1 GPa, respectively, and then decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
6.
7.
GaAs-AlGaAs V-grooved inner stripe (VIS) quantum-well wire (QWW) lasers grown by metalorganic chemical vapor deposition with different current blocking configurations, n-blocking on p-substrate (VIPS), p-n-p-n blocking on n-substrate (VI(PN)nS) and p-blocking on n-substrate (VINS) have been fabricated and characterized. The VIPS QWW lasers show the most stable characteristics with effective current confinement: one of the lasers shows fundamental transverse mode, lasing up to 5 mW/facet, typical threshold current of 39.9 mA at 818.5 mm, an external differential quantum efficiency of 24%/facet, and characteristic temperature of 92 K. The current tuning rate was almost linear at 0.031 mm/mA, and the temperature tuning rate was measured to be 0.14 nm/°C. Comparison of the light output versus current characteristics of the lasers with different current blocking configurations is presented here  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号