首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   8篇
工业技术   228篇
  2024年   1篇
  2022年   5篇
  2021年   10篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   16篇
  2012年   19篇
  2011年   17篇
  2010年   15篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   1篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   14篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1987年   1篇
  1985年   1篇
  1976年   3篇
  1972年   1篇
排序方式: 共有228条查询结果,搜索用时 0 毫秒
1.
2.
OBJECTIVE: For resuscitation of hemorrhagic hypovolemia, we compared the effectiveness of (1) isotonic lactated Ringer's solution (LRS), (2) 2400 mOsm of 7.5% NaCl:6% dextran 70 (HSD), and (3) 2400 mOsm of 7.9% sodium acetate:1.9% NaCl:6% dextran 70 (HAD). DESIGN: In six randomized, blinded experiments for each solution, conscious instrumented adult sheep were hemorrhaged by removing approximately 1.8 L (42 +/- 3 mL/kg) of blood, while maintaining the mean arterial pressure (MAP) at 50 mm Hg for 2 hours. METHODS: Test solutions were infused as needed to restore the cardiac index to baseline. RESULTS: Volume requirements with HAD (236 +/- 29 mL) and HSD (244 +/- 39 mL) were significantly less (p < 0.05) than LRS (3463 +/- 234 mL). Mean arterial pressure was normalized with HSD and LRS, but not with HAD, which resulted in MAPs of 20 to 25 mm Hg less than baseline resulting from a reduced peripheral resistance. Oxygen delivery, however, was significantly higher with HAD during the resuscitation period. Acid-base balance (pH) and oxygen consumption were normalized within 5 minutes of infusion only with HAD. CONCLUSIONS: Small-volume infusion with HAD resulting in "high-flow-low-pressure" resuscitation may offer unique hemodynamic and metabolic advantages for the initial treatment of hemorrhage from trauma.  相似文献   
3.
Among the agonists against three peroxisome proliferator-activated receptor (PPAR) subtypes, those against PPARα (fibrates) and PPARγ (glitazones) are currently used to treat dyslipidemia and type 2 diabetes, respectively, whereas PPARδ agonists are expected to be the next-generation metabolic disease drug. In addition, some dual/pan PPAR agonists are currently being investigated via clinical trials as one of the first curative drugs against nonalcoholic fatty liver disease (NAFLD). Because PPARα/δ/γ share considerable amino acid identity and three-dimensional structures, especially in ligand-binding domains (LBDs), clinically approved fibrates, such as bezafibrate, fenofibric acid, and pemafibrate, could also act on PPARδ/γ when used as anti-NAFLD drugs. Therefore, this study examined their PPARα/δ/γ selectivity using three independent assays—a dual luciferase-based GAL4 transactivation assay for COS-7 cells, time-resolved fluorescence resonance energy transfer-based coactivator recruitment assay, and circular dichroism spectroscopy-based thermostability assay. Although the efficacy and efficiency highly varied between agonists, assay types, and PPAR subtypes, the three fibrates, except fenofibric acid that did not affect PPARδ-mediated transactivation and coactivator recruitment, activated all PPAR subtypes in those assays. Furthermore, we aimed to obtain cocrystal structures of PPARδ/γ-LBD and the three fibrates via X-ray diffraction and versatile crystallization methods, which we recently used to obtain 34 structures of PPARα-LBD cocrystallized with 17 ligands, including the fibrates. We herein reveal five novel high-resolution structures of PPARδ/γ–bezafibrate, PPARγ–fenofibric acid, and PPARδ/γ–pemafibrate, thereby providing the molecular basis for their application beyond dyslipidemia treatment.  相似文献   
4.
5.
For high-throughput screening of protein-protein interactions, we have developed a novel yeast screening system using Bimolecular fluorescence complementation (BiFC). Two yeast plasmids, in which genes of heterodimerized peptides LZA and LZB were each fused with those of non-fluorescent half fragments of Kusabira-Green mutant (mKG2), were transformed into a- and α-type yeast, respectively. Mating of them gave a library, which was screened by following green fluorescence resulted from LZA-LZB interaction. The method showed potential ability to detect the positive clones from a model library, in which green-fluorescent and non-fluorescent yeast was mixed in a ratio of 1:675.  相似文献   
6.
7.
8.
Electrospun polyacrylonitrile (PAN)-based nanofiber with a uniform diameter of ca. 800 nm was carbonized and steam-activated to produce activated carbon nanofiber with tailored microporosity and abundant nitrogen-containing functional groups as highly efficient adsorption sites. A remarkable amount of formaldehyde, a typical indoor pollutant, was adsorbed onto the pore surface of the PAN-based activated carbon nanofibers even at a low concentration (ca. 11 ppm), demonstrating more than twice as long as breakthrough time of formaldehyde adsorption as compared to conventional activated carbon fibers of larger fiber diameter. The tailored shallow microporosity was considered to afford the preferential adsorption of formaldehyde also in a humid environment.  相似文献   
9.
X. Gu    T. Suzuki    Osato  Miyawaki 《Journal of food science》2005,70(9):E546-E551
ABSTRACT: In the progressive freeze-concentration, limiting partition coefficient, K0 , is a very important process parameter, which corresponds to the partition coefficient of a solute between the ice and liquid phase assuming the infinitesimal ice growth rate and/or the infinite mass-transfer rate at the ice-liquid interface. K0 was determined for glucose and various electrolytes in the single-component and multi-component systems. K0 was dependent both on the concentration and the type of solute. In the single-component system, osmotic pressure was proved to be the major determinant of K0 . In the multi-component system, K0 for a solute was affected by the coexisting solute through the osmotic pressure of the total system. K0 was also dependent on viscosity when the change in the osmotic pressure was limited but the change in the viscosity was considerable because of the coexisting solute.  相似文献   
10.
Silk is a protein fiber used to weave fabrics and as a biomaterial in medical applications. Recently, genetically modified silks have been produced from transgenic silkworms. In the present study, transgenic silkworms for the mass production of three colors of fluorescent silks, (green, red, and orange) are generated using a vector originating from the fibroin H chain gene and a classical breeding method. The suitability of the recombinant silks for making fabrics is investigated by harvesting large amounts of the cocoons, obtained from rearing over 20 thousand silkworms. The application of low temperature and a weakly alkaline solution for cooking and reeling enables the production of silk fiber without loss of color. The maximum strain tolerated and Young's modulus of the fluorescent silks are similar to those of ordinary silk, although the maximum stress value of the recombinant silk is slightly lower than that of the control. Fabrics with fluorescent color are demonstrated using the recombinant silk, with the color persisting for over two years. The results indicate that large amounts of genetically modified silk can be made by transgenic silkworms, and the silk is applicable as functional silk fiber for making fabrics and for use in medical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号