首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
工业技术   14篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
猪小肠粘膜经过Tris-HCl缓冲液(pH8.5)充分溶解、正丁醇除脂、冷冻离心、真空冻干等步骤处理后,先后经过Phenyl High Performance疏水层析/DEAE Fast Flow 阴离子层析/Sephacryl S-200凝胶层析纯化后得到猪小肠粘膜ALP(碱性磷酸酶),并对其蛋白二级结构及理化性质进行研究。结果表明:该酶经过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离得到ALP蛋白带,分子量约为57.0 kDa。该酶纯化倍数为68.2,比活力倍数为19.1 U/mg。利用圆二色性光谱测定纯化后蛋白二级结构,发现α-螺旋3.6%、β-折叠41.8%、β-转角21.5%、无规则卷曲33.1%。ALP在催化底物对硝基苯磷酸二钠(p-NPP)作用下最佳温度30 ℃、最佳pH为9.5;金属离子对ALP起到激活的离子为Mg2+和Ca2+,起到抑制的离子为Zn2+和EDTA。  相似文献   
2.
该研究主要探究超高压(ultra-high pressure,UHP)处理对分别以卡拉胶、黄原胶和塔拉胶为稳定剂制得的冰淇淋浆料及其成品品质的影响。以稳定剂添加量0.15%,分别经50、100、150、200 MPa处理60 min为处理组,以老化处理(2℃下静置24 h)为对照组,测定冰淇淋浆料的乳化性、乳化稳定性、混料粘度、粒径,分析荧光强度分布趋势,测定冰淇淋成品的硬度、膨胀率和融化率。结果表明,浆料经超高压处理后,其乳化性呈先升高后降低的趋势,当压力为150 MPa时乳化稳定性最高;内源荧光光谱扫描结果显示浆料中酪蛋白分子发生去折叠现象;该条件下以卡拉胶为稳定剂制得的冰淇淋成品的硬度、膨胀率和融化率最好。由此可知,由卡拉胶为稳定剂制得冰淇淋浆料在150 MPa处理后能在一定程度上改善冰淇淋的成品品质。  相似文献   
3.
以脱脂豆粕为原料,通过植物乳杆菌液态发酵后制备大豆分离蛋白,测定所得大豆分离蛋白的溶解性、乳化性、乳化稳定性、凝胶强度、持水性和持油性等功能性质。豆粕经发酵后所提大豆分离蛋白的溶解性、乳化性、凝胶强度、持水性和持油性均显著提高(p<0.05),乳化稳定性显著降低(p<0.05),持水性及持油性变化不大。SDS-PAGE电泳显示,豆粕经发酵后所提大豆分离蛋白在29.044.3 ku出现新条带,是由于乳酸菌所产蛋白酶的降解作用,大豆分离蛋白中大分子量蛋白被降解成小分子量蛋白,其中发酵对7S组分影响较大,对11S组分影响较小。经实验表明乳酸菌发酵可以有效改善大豆分离蛋白的功能性质。   相似文献   
4.

本研究以汉麻分离蛋白(Hemp Protein Isolate,HPI)为原料,通过超高压辅助酶解反应对HPI进行改性,测定不同压力下汉麻蛋白酶解产物(hydrolysate of hemp protein isolate,HPIH)的聚丙烯酰胺凝胶电泳(SDS polyacrylamide gelelectrophoresis,SDS-PAGE)电泳特性、表面疏水性、巯基含量、傅立叶红外光谱和内源荧光光谱分析改性前后汉麻分离蛋白的结构变化。结果表明,超高压(ultra-high pressure,UHP)(0.1、100、200、300 MPa)处理对HPI酶解反应具有一定的辅助作用,且随压力的升高酶解反应程度逐渐增大,分子量逐渐降低;HPI经改性后,疏水性基团逐渐暴露,表面疏水性随压力的增大先上升后下降,且变化差异性显著(P<0.05),在200 MPa时表面疏水性达到最大;酶解反应后,HPIH游离巯基含量显著降低(P<0.05),而表面巯基含量随压力增大呈先上升后下降的趋势;通过测定改性前后蛋白质氨基酸组成及含量可知,改性前后HPI氨基酸组成不变,但各氨基酸含量存在不同程度下降;由傅立叶红外光谱图可以看出,与HPI相比,HPIH的吸收峰强度、峰型及峰面积等均发生不同程度变化,说明超高压辅助酶解反应使蛋白质二级结构发生改变;内源荧光光谱显示,HPIH荧光强度增大且最大发射波长发生红移,说明酶解反应改变了HPI的三级结构;抗氧化活性结果表明,适当的压力处理可有效提升酶解产物的抗氧化能力,当压力为200 MPa时,HPIH的DPPH、ABTS+自由基清除能力及还原能力达到最高。综上所述,超高压辅助酶解改性处理能显著改变汉麻分离蛋白的二、三级结构,暴露出疏水基团等活性基团,从而提高其抗氧化性。

  相似文献   
5.
利用植物乳杆菌发酵降解低温豆粕乳,研究其中大豆蛋白结构的变化。随发酵时间的延长,样品水解度和体外消化率均呈升高趋势,可溶性蛋白粒径分布向低粒径方向移动,说明脱脂豆粕中大豆蛋白经发酵后有一定程度的降解。同时,发酵处理后提取的大豆蛋白与原始大豆蛋白和发酵0 h时提取的大豆蛋白相比,蛋白分子进一步展开,β-折叠含量升高,α-螺旋含量降低,荧光光谱中最大吸收波长发生红移,暴露巯基含量升高。另外,扫描电子显微镜观察结果表明大豆蛋白经发酵后表面不再光滑,出现腐蚀性孔洞。  相似文献   
6.
张莉丽  崔宪  马微  刘容旭  韩建春 《食品科学》2014,35(15):141-144
以干酪乳杆菌(Lactobacillus casei)、短乳杆菌(L. brevis)、嗜酸乳杆菌(L. acidophilus)、植物乳杆菌(L. plantarum)、鼠李糖乳杆菌(L. rhamnosus)和保加利亚乳杆菌(L. bulgaricus)分别发酵豆乳,测定发酵期间pH值、滴定酸度、游离氨基氮,发酵结束后的活菌数和质构参数,并且对所得产品进行感官评价。结果表明:发酵过程中前5 株菌发酵豆乳的pH值显著下降,而L. bulgaricus下降缓慢,发酵24 h pH值仅为5.2。这6 株菌发酵产品的活菌数均达到1.0×108 CFU/mL以上。结果表明L. casei、L. brevis、L. acidophilus和L. plantarum发酵得到的产品的坚实度、稠度、黏度、黏附性指数均较高,感官评定结果表明这4 株菌发酵豆乳产品得分均较高,容易被消费者接受,适合用于生产发酵豆乳产品。  相似文献   
7.
以五味子为原料水提多糖,经超滤、去蛋白后制得不同分子质量的五味子多糖(Schisandraceaepolysaccharide,SP)组分SP1(分子质量100 ku以上)和SP2(分子质量10~100 ku),使用Caco-2和HT-29两种肠道肿瘤细胞检测体外抗肿瘤活性。结果表明:两种SP干预的肿瘤细胞增殖均受到抑制,实时荧光定量实时定量聚合酶链式反应检测发现Caspase-3相对表达量均出现了一定程度升高。其中SP1抑制作用较小,需较高剂量(500 μg/mL以上)孵育较长时间(72 h)才有显著抑制效果(P<0.05),SP2抑制作用明显,显著抑制所需孵育时间和剂量都更少,对Caspase-3相对表达量提升更大。实验显示SP具有很好的抑制肠道肿瘤增殖潜力,小分子质量组分抗癌活性更强。  相似文献   
8.
以玉米、糯米、大豆、小米为原料制作满族酸茶,应用响应面法优化液化及糖化工艺。以葡萄糖当量(即DE值)为评价指标以酶添加量、反应时间、反应温度、反应pH为影响因素,采用响应面试验分别对液化及糖化工艺进行优化。结果表明:液化最佳工艺为加酶量6 U/g,液化时间33 min,液化温度72℃,初始pH6.5,在此条件下液化DE值为21.32%±0.09%;糖化最优工艺为加酶量140 U/g,糖化时间5 h,糖化温度56℃,初始pH4.6,在此条件下糖化DE值为51.92%±0.13%。在此工艺条件下还原糖含量较高为0.0997 g/mL,可以为满族酸茶的产业化生产提供技术参数。  相似文献   
9.
采用亚麻籽胶(FG)、魔芋粉(KGM)、羧甲基纤维素钠(CMC)三种多糖与大豆分离蛋白(SPI)建立SPI-多糖混合体系,研究了不同均质压力(1120 MPa)对SPI以及上述三种体系的功能特性的影响。结果表明:亚麻籽胶的添加使SPI的溶解性和乳化性显著(p<0.05)提高,在压力120 MPa时达到最大值,但是其乳化稳定性随压力升高而降低;SPIKGM体系的起泡性和泡沫稳定性在均质压力30 MPa时最佳;均质作用使SPI的持水性下降,添加多糖也没有明显改善SPI的持水性;SPI-FG的持油性在90 MPa时达到最高值。添加CMC的SPI在高压均质作用下各功能性质也有提升,但效果不是十分明显。高压均质对SPI和SPI-多糖体系的功能性质有不同程度的改善。   相似文献   
10.
本研究以汉麻分离蛋白(Hemp Protein Isolate,HPI)为原料,通过超高压辅助酶解反应对HPI进行改性,以溶解度和水解度为判定指标筛选酶解改性反应最佳条件,并探究超高压辅助酶解反应对酶解产物溶解性、起泡性、乳化性、持水性、持油性的影响。结果表明,HPI酶解反应最适条件为:加酶量(复合蛋白酶)5000 U/g、酶解改性pH8.0、酶解改性温度55 ℃、酶解改性时间50 min。以HPI为对照,当压力为200 MPa时,酶解产物的溶解度、起泡性、乳化性、持油性最高,压力为100 MPa时,泡沫稳定性最好,酶解后的乳化稳定性存在不同程度的下降,压力为0.1 MPa时其持水性达到最大值。综上所述,超高压技术能够有效促进HPI的酶解改性反应,且压力为200 MPa时,酶解产物的理化性质最好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号