首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   0篇
工业技术   127篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   8篇
  2011年   14篇
  2010年   12篇
  2009年   11篇
  2008年   9篇
  2007年   11篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有127条查询结果,搜索用时 9 毫秒
1.
This paper presents a systematic development of unified signal flow graph model for an interleaved buck converter system operating in continuous inductor current mode. From this signal flow graph small, large‐signal and steady‐state models are developed, which are useful to study the converter dynamic and steady‐state behaviour. Converter performance expressions like steady‐state voltage gain, efficiency expressions and other small‐signal characteristic transfer functions are derived. Development of unified signal flow graph is explained for a 3‐cell interleaved converter system. Derivation of large, small‐signal and steady‐state models from the unified signal flow graph is demonstrated by considering a 2‐cell interleaved buck converter system. Large signal model was programmed in TUTSIM simulator, and the large‐signal responses against supply, load disturbances were predicted. Signal flow graph analysis results are validated with PSIM simulations. Further, the mathematical models obtained from the signal flow graph modelling are in agreement with those obtained from the state‐space averaging technique. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
The case has been established that the wind power plant must be treated as an integral part of the electric system, thereby constituting the wind energy conversion system. Recent advancement in size and technology of wind turbines requires sophisticated control systems to effectively optimize energy conversion and enhance grid integration. As a first step toward controller design, modelling has become a prerequisite. This paper explores controller design based on modelling the wind speed as a stochastic process, and the wind turbine as a multi‐mass system with a soft shaft linking the turbine with the doubly fed induction generator. A control strategy incorporating a linear quadratic Gaussian (LQG) that relies on state estimation for full‐state feedback is proposed to augment a linear controller for generator torque control. The control objectives are to reduce stresses on the drivetrain and to ensure operation geared toward optimal power conversion. This study focuses on above‐rated wind speeds, and the LQG's main purpose is to add damping to the drivetrain, thereby minimizing cyclic fatigue, while a pitch control mechanism prevents rotor overspeed, thereby maintaining rated power. Simulations show the efficacy of the proposed paradigm in meeting the control objectives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
Nowadays, a wind turbine generator (WTG) is required to provide control capabilities as the output power of WTG fluctuates. Under this scenario, this paper proposes an output power control method of a wind farm (WF) connected to a small power system using pitch angle control. In this control approach, the WF output power control is achieved by two control levels: central and local. In the central control, the WF output power command is determined by considering the frequency deviations and wind speeds using a fuzzy function. Then, the local output power commands for each of the WTGs are based on the proposed dispatch control. In the proposed dispatch control, the output commands of each WTG are determined by considering wind conditions for each of the WTGs. The simulation results by using an actual detailed model for the wind power system show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Nanorods of substoichiometric tungsten oxide (WOx) were grown on W(001) substrates. Two methods for the growth of nanorods were used: oxidation of the substrate under appropriate conditions and the deposition of tungsten oxide from a tungsten foil heated in the presence of oxygen. The grown nanorods were observed using a scanning electron microscope and an atomic force microscope. The diameters of the nanorods were 5–20 nm. The nanorods were slightly inclined from the directions parallel or normal to the surface. The inclination of nanorods was explained in terms of the epitaxial relationship between WO3 crystals and the W(001) substrate. The WO3 crystals formed at the initial stage of growth act as the nuclei of WOx nanorods. We observed selective enhancement of the growth in a certain epitaxial direction depending on the method of growth, and an array of WOx nanorods was produced on the W(001) substrate.  相似文献   
5.
Effective utilization of renewable energies such as wind energy instead of fossil fuels is desirable. Wind energy is not constant and windmill output is proportional to the cube of the wind speed, which causes the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce the output power fluctuation of wind farms, this paper presents an output power leveling control strategy for a wind farm based on both the average wind farm output power and the standard deviation of the wind farm output power, a cooperative control strategy for WTGs, and pitch angle control using a generalized predictive controller (GPC) in all WTG operating regions. Simulation results using an actual detailed model for wind farm systems show the effectiveness of the proposed method. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 158(4): 31– 41, 2007; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/eej.20448  相似文献   
6.
A wind turbine generator (WTG) system's output is not constant and fluctuates depending on wind conditions. Fluctuating power causes frequency deviations and adverse effects to an isolated power system when large output power from WTG systems is penetrated in the power system. This paper presents an output power control methodology of a WTG for frequency control using a load power estimator. The load power is estimated by a disturbance observer, and the output power command of the WTG is determined according to the estimated load. Besides, the WTG can also be controlled during wind turbulence since the output power command is determined by considering wind conditions. The reduction of the power system frequency deviation by using the WTG can be achieved by the proposed method. The effectiveness of the proposed method is validated by numerical simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
Output power of wind turbine generator (WTG) is not constant and fluctuates due to wind speed changes. To reduce the adverse effects of the power system introducing WTGs, there are several published reports on output power control of WTGs detailing various researches based on pitch angle control, variable speed wind turbines, energy storage systems, and so on. In this context, this paper presents an integrated control method for a WF to reduce frequency deviations in a small power system. In this study, the WF achieves the frequency control with two control schemes: load estimation and short-term ahead wind speed prediction. For load estimation in the small power system, a minimal-order observer is used as disturbance observer. The estimated load is utilized to determine the output power command of the WF. To regulate the output power command of the WF according to wind speed changing, short-term ahead wind speed is predicted by using least-squares method. The predicted wind speed adjusts the output power command of the WF as a multiplying factor with fuzzy reasoning. By means of the proposed method, the WF can operate according to the wind and load conditions. In the WF system, each output power of the WTGs is controlled by regulating each pitch angle. For increasing acquisition power of the WF, a dispatch control method also is proposed. In the pitch angle control system of each WTG, generalized predictive control (GPC) is applied to enhance the control performance. Effectiveness of the proposed method is verified by the numerical simulations.  相似文献   
8.
Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.  相似文献   
9.
A hybrid power system uses many wind turbine generators in isolated small islands. The output power of wind turbine generators is mostly fluctuating and has an effect on system frequency. In order to solve this problem, we propose a new power system using renewable energy in small, isolated islands. The system can supply high-quality power using an aqua electrolyzer, fuel cell, renewable energy, and diesel generator. The generated hydrogen by an aqua electrolyzer is used as fuel for a fuel cell. The simulation results are given to demonstrate the availability of the proposed system in this paper.  相似文献   
10.
We present an unboxed operational semantics for an ML-style polymorphic language. Different from the conventional formalisms, the proposed semantics accounts for actual representations of run-time objects of various types, and supports a refined notion of polymorphism that allows polymorphic functions to be applied directly to values of various different representations. In particular, polymorphic functions can receive multi-word constants such as floating-point numbers without requiring them to be boxed (i.e., heap allocated.) This semantics will serve as an alternative basis for implementing polymorphic languages. The development of the semantics is based on the technique of the type-inference-based compilation for polymorphic record operations [20]. We first develop a lower-level calculus, called a polymorphic unboxed calculus, that accounts for direct manipulation of unboxed values in a polymorphic language. This unboxed calculus supports efficient value binding through integer representation of variables. Different from de Bruijn indexes, our integer representation of a variable corresponds to the actual offset to the value in a run-time environment consisting of objects of various sizes. Polymorphism is supported through an abstraction mechanism over argument sizes. We then develop an algorithm that translates ML into the polymorphic unboxed calculus by using type information obtained through type inference. At the time of polymorphic let binding, the necessary size abstractions are inserted so that a polymorphic function is translated into a function that is polymorphic not only in the type of the argument but also in its size. The ML type system is shown to be sound with respect to the operational semantics realized by the translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号