首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   15篇
数理化   156篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   5篇
  2012年   14篇
  2011年   15篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   3篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
排序方式: 共有156条查询结果,搜索用时 265 毫秒
1.
In this work, an analysis of the parametric sensitivity of the overshoot in the concentration of the adsorbate in the adsorbed phase, which occurs under certain conditions during an ion-exchange adsorption process, is presented and used to suggest practical implications of the concentration overshoot phenomenon on operational policies and configurations of chromatographic columns and finite bath adsorption systems. The results presented in this work demonstrate and explain how the development of an overshoot in the concentration of the adsorbate in the adsorbed phase could be enhanced or suppressed by (i) varying the diffusion coefficient, D3, of the adsorbate relative to the diffusion coefficients, D1 and D2, of the cations and anions, respectively, of the background/buffer electrolyte, (ii) altering the initial surface charge density, delta0, of the charged adsorbent particles, (iii) varying the Debye length, lambda, and (iv) changing the initial concentration, Cd3(0), of the adsorbate in the bulk liquid of the finite bath. The influence of the pH and ionic strength, Iinfinity, of the liquid solution on the development of an overshoot in the concentration of the adsorbate in the adsorbed phase is also presented and discussed through the relationships of these parameters to delta0 and lambda, respectively. Furthermore, a detailed explanation of the effects of each parameter on the interplay between the diffusive and electrophoretic molar fluxes, as well as on the structure and functioning of the electrical double layer, which are responsible for the concentration overshoot phenomenon, is presented.  相似文献   
2.
A gas chromatographic (GC) method was developed and statistically validated for the simultaneous determination of residues of pyrethroid, endosulfan, and organophosphorus insecticides and some of their metabolites on olive tree leaves. Pesticide residues were extracted by static extraction with acetone-dichloromethane. After evaporation of the extract to dryness and redissolution in acetone, the organophosphorus insecticides were determined by GC with nitrogen-phosphorus detection. Another portion of the extract, after solvent change to acetonitrile, was cleaned up on an Alumina-N cartridge and analyzed for insecticides sensitive to electron-capture detection (ECD), i.e., pyrethroids and endosulfan and its metabolite. Recoveries of the organophosphorus insecticides ranged from 80.7 to 93.3% with relative standard deviations (RSDs) of < or = 7.2%; recoveries of the ECD-sensitive insecticides ranged from 71.6 to 89.5% with RSDs of < or = 11.6%. The method was used to analyze 26 samples of olive tree leaves from organic olive groves all over Greece, and the results confirmed the viability of the method for routine analysis. Residues of fenthion and fenthion sulfoxide were found in one and 3 samples, respectively, and their identities were confirmed by GC with mass spectrometry.  相似文献   
3.
A model that describes the diffusive and electrophoretic mass transport of the cation and anion species of a buffer electrolyte and of a charged adsorbate in the liquid film surrounding nonporous adsorbent particles in a finite bath adsorption system, in which adsorption of the charged adsorbate onto the charged surface of the nonporous particles occurs, is constructed and solved. The dynamic behavior of the mechanisms of this model explicitly demonstrates (a) the interplay between the diffusive and electrophoretic molar fluxes of the charged adsorbate and of the species of the buffer electrolyte in the liquid film surrounding the nonporous adsorbent particles, (b) the significant effect that the functioning of the electrical double layer has on the transport of the charged species and on the adsorption of the charged adsorbate, and (c) the substantial effect that the dynamic behavior of the surface charge density has on the functioning of the electrical double layer. It is found that at equilibrium, the value of the concentration of the charged adsorbate in the fluid layer adjacent to the surface of the adsorbent particles is significantly greater than the value of the concentration of the adsorbate in the finite bath, while, of course, the net molar flux of the charged adsorbate in the liquid film is equal to zero at equilibrium. This result is very different than that obtained from the conventional model that is currently used to describe the transport of a charged adsorbate in the liquid film for systems involving the adsorption of a charged adsorbate onto the charged surface of nonporous adsorbent particles; the conventional model (i) does not consider the existence of an electrical double layer, (ii) assumes that the transport of the charged adsorbate occurs only by diffusion in the liquid film, and (iii) causes at equilibrium the value of the charged adsorbate in the liquid layer adjacent to the surface of the particles to become equal to the value of the concentration of the charged adsorbate in the liquid of the finite bath. Furthermore, it was found that a maximum can occur in the dynamic behavior of the concentration of the adsorbate in the adsorbed phase when the value of the free molecular diffusion coefficient of the adsorbate is relatively large, because the increased magnitude of the synergistic interplay between the diffusive and electrophoretic molar fluxes of the adsorbate in the liquid film allows the adsorbate to accumulate (to be entrapped) in the liquid layer adjacent to the surface of the adsorbent particles faster than the concentrations of the electrolyte species, whose net molar fluxes are significantly hindered due to their opposing diffusive and electrophoretic molar fluxes, can adjust to account for the change in the surface charge density of the particles that arises from the adsorption of the charged adsorbate. The results presented in this work also have significant implications in finite bath adsorption systems involving the adsorption of a charged adsorbate onto the surface of the pores of charged porous adsorbent particles, because the diffusion and the electrophoretic migration of the charged solutes (cations, anions, and charged adsorbate) in the pores of the adsorbent particles will depend on the dynamic concentration profiles of the charged solutes in the liquid film surrounding the charged porous adsorbent particles. The results of the present work are also used to illustrate how the functioning of the electrical double layer could contribute to the development of inner radial humps (concentration rings) in the concentration of the adsorbate in the adsorbed phase of charged porous adsorbent particles.  相似文献   
4.
The results obtained from the pore network model employed in this work, clearly show that the magnitudes of the intraparticle electroosmotic volumetric flow-rate, Qintrap, and velocity, (v(intrap,x)), in the pores of the charged porous silica particles considered in this study are greater than zero. The intraparticle Peclet number, Pe(intra, of a solute in these charged porous silica particles would be greater than zero, and, in fact, the magnitude of the intraparticle Peclet number, Pe(intrap), of lysozyme is greater than unity for all the values of the pore connectivity, nT, of the intraparticle pores and of the applied electric potential difference per unit length, Ex, along the axis of the capillary column considered in this work. Furthermore, the values of the intraparticle electroosmotic volumetric flow-rate, Qintrap, and velocity, (v(intrap,x)), as well as the magnitude of the pore diffusion coefficient, Dp, of the solute increase as the value of the pore connectivity, nT, of the intraparticle pores increases. The intraparticle electroosmotic flow can contribute significantly, if the appropriate chemistry is employed in the mobile liquid phase and in the charged porous particles, in (i) decreasing the intraparticle mass transfer resistance, (ii) decreasing the dispersive mass transfer effects, and (iii) increasing the intraparticle mass transfer rates so that high column efficiency and resolution can be obtained.  相似文献   
5.
Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Consequently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold interesting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3 or OTf) based on the cryptand H3L = N[(CH2)2N Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–R–CH Created by potrace 1.16, written by Peter Selinger 2001-2019 N–(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent proves crucial in controlling the Ln–Ln* composition. Choosing the optimal solvent and counter ion afford pure heterodinuclear complexes with any given combination of Gd(iii)–Lu(iii) including Y(iii). To demonstrate the versatility of the synthesis all dinuclear combinations of Y(iii), Gd(iii), Yb(iii) and Lu(iii) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln–Ln distances of ∼3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

We present a synthetic strategy to prepare the first heterodinuclear lanthanide(iii) cryptate complexes. The cryptate design ensures that the complexes are stable in solution for days. The exchange coupling in YbYb, GdGd and YbGd is investigated.  相似文献   
6.
Analytical methodology was developed and validated for the determination of spiroxamine residues in grapes, must, and wine by gas chromatography/ion trap-mass spectrometry (GC/IT-MS). Two extraction procedures were used: the first involved grapes, must, and wine extraction with alkaline cyclohexane-dichloromethane (9 + 1, v/v) solution, and the second grape extraction with acetone, dichloromethane, and petroleum ether. In both procedures, the extract was centrifuged, evaporated to dryness, and reconstituted in cyclohexane or 2,2,4-trimethylpentane-toluene (9 + 1, v/v), respectively. Spiroxamine diastereomers A and B were determined by GC/IT-MS, and a matrix effect was observed in the case of grapes but not in must and wine. Recovery of spiroxamine from fortified samples at 0.02 to 5.0 mg/kg ranged from 78-102% for grapes and must, with relative standard deviation (RSD) <13%; for red and white wines, recoveries ranged from 90 to 101% with RSD <9%. The limit of quantification was 0.02 mg/kg for grapes, must, and wine or 0.10 mg/kg for grapes, depending on the extraction procedure used.  相似文献   
7.
Gradient (or pseudo‐diblock) copolymers were synthesized from 2‐methyl‐2‐oxazoline and 2‐phenyl‐2‐oxazoline monomer mixtures via cationic polymerization. The self‐assembling properties of these biocompatible gradient copolymers in aqueous solutions were investigated, in an effort to use the produced nanostructures as nanocarriers for hydrophobic pharmaceutical molecules. Dynamic and static light scattering as well as AFM measurements showed that the copolymers assemble in different supramolecular nanostructures (spherical micelles, vesicles and aggregates) depending on copolymer composition. Fluorescence spectroscopy studies revealed a microenvironment of unusually high polarity inside the nanostructures. This observation is related partly to the gradient structure of the copolymers. The polymeric nanostructures were stable with time. Their structural properties in different aqueous media—PBS buffer, RPMI solution—simulating conditions used in pharmacological/medicinal studies, have been also investigated and a composition dependent behavior was observed. Finally, the hydrophobic drug indomethacin was successfully encapsulated within the gradient copolymer nanostructures and the properties of the mixed aggregates were studied in respect to the initial copolymer assemblies. The produced aggregates encapsulating indomethacin showed a significant increase of their mass and size compared to original purely polymeric ones. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
8.
9.
A mathematical model is constructed and solved that could describe the dynamic behavior of the adsorption of a solute of interest in single and stratified columns packed with partially fractal porous adsorbent particles. The results show that a stratified column bed whose length is the same as that of a single column bed, provides larger breakthrough times and a higher dynamic utilization of the adsorptive capacity of the particles than those obtained from the single column bed, and the superior performance of the stratified bed becomes especially more important when the superficial velocity of the flowing fluid stream in the column is increased to accommodate increases in the system throughput. This occurs because the stratified column bed provides larger average external and intraparticle mass transfer and adsorption rates per unit length of packed column. It is also shown that increases in the total number of recursions of the fractal and the ratio of the radii between larger and smaller microspheres that make up the partially fractal particles, increase the intraparticle mass transfer and adsorption rates and lead to larger breakthrough times and dynamic utilization of the adsorptive capacity of the particles. The results of this work indicate that highly efficient adsorption separations could be realized through the use of a stratified column comprised from a practically reasonable number of sections packed with partially fractal porous adsorbent particles having reasonably large (i) total number of recursions of the fractal and (ii) ratio of the radii between larger and smaller microspheres from which the partially fractal particles are made from. It is important to mention here that the physical concepts and modeling approaches presented in this work could be, after a few modifications of the model, applied in studying the dynamic behavior of chemical catalysis and biocatalysis in reactor beds packed with partially fractal porous catalyst particles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号