首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   0篇
数理化   128篇
  2021年   2篇
  2019年   1篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   13篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1976年   2篇
排序方式: 共有128条查询结果,搜索用时 234 毫秒
1.
An antiviral nucleoside or virazole was synthesized efficiently and regioselectively starting with benzyl cyanoformate.  相似文献   
2.
A new method for silylation of allyl ethers with chlorosilanes has been developed by the use of Cp2TiCl2 as a catalyst. This reaction proceeds efficiently at −20 °C in THF using nBuMgCl. A plausible reaction pathway via allyltitanocene intermediate was proposed.  相似文献   
3.
We examined hydrogenated purified egg yolk lecithins, having practical advantages over non-hydrogenated ones, as liposomal membrane materials. Liposomes were prepared by the microencapsulation vesicle (MCV) method in which liposomes are formed through two-step emulsification and dispersion. Three types of purified egg yolk lecithins with different iodine values were examined after being dissolved in one of three lipid solvents. The liposome size increased as the temperature during the second emulsification increased, being closer to the boiling temperature of the solvent. The preparation temperature in relation to the transition temperature of each lecithin was also a factor affecting liposome sizes. As for the encapsulation efficiencies of the model compound calcein in liposomes, they differed mainly depending on the solubility of each lecithin in a lipid solvent and it was more obvious in hydrogenated lecithins. A high preparation temperature resulted in lower encapsulation efficiencies, suggesting that leakage of encapsulated calcein was facilitated at high temperature in the MCV methods. There was a significant correlation between liposome sizes and encapsulation efficiencies in non-hydrogenated purified egg yolk lecithin but not in hydrogenated ones. When using hydrogenated purified egg yolk lecithins as liposomal membrane materials, it was suggested that a lipid solvent should be chosen so that a lecithin completely dissolves under the preparation condition in order to achieve a higher encapsulation efficiency. Smaller liposome particles were obtained when the second emulsification was performed at a lower temperature compared with the boiling point of the lipid solvent. These findings can be applied to control encapsulation efficiencies and particle sizes in each particular liposome preparation enclosing therapeutic agents.  相似文献   
4.
Octadecapeptides carrying a ferrocene moiety at the molecular terminal were self-assembled on gold, and long-range electron transfer from the ferrocene moiety to gold was investigated by electrochemical methods. Effects on electron transfer of dipole moment of helical peptides, linkers connecting the peptide to gold, and chromophores introduced into the side chains were discussed. Cyclic voltammetry of the monolayers in an aqueous solution revealed that long-range electron transfer over 40 A occurred along the peptide molecule. Chronoamperometry showed that the long-range electron transfer should be ascribed to a hopping mechanism with use of amide groups as hopping sites. Electron transfer through the long peptide was not significantly accelerated by the dipole moment. However, the linker remarkably affected electron transfer depending on whether it was a methylene chain or a phenylene group, suggesting that local electron transfer between gold and the peptides should be the slowest step to determine the overall rate. Pyrenyl groups introduced into the side chains in the middle of the peptide molecule did not noticeably change electron transfer, probably because pyrenyl groups were too distant to allow direct electron transfer between them. Electrostatic potential profiles across the peptide monolayers were also calculated to explain reasonably the several interesting features in the present peptide systems.  相似文献   
5.
This paper describes the synthesis of four tricyclic heterocycles, furo[2,3–6:4,5-c']- ( 5a ), furo[3,2-b:4,5-c']- ( 5b ), furo[2,3-c:4,5-c']- ( 5c ) and furo[3,2-c:4,5-c']dipyridine ( 5d ). Starting with 2-formylfuropyridines ( 1a-d ), β-(2-furopyridyl)acrylic acids 2a-d were obtained by condensing with malonic acid. The acrylic acids were converted to the acid azides by reaction with ethyl chloroformate and the subsequent reaction with sodium azide. Heating of the acid azides at 230–240° with diphenylmethane and tributylamine gave tricyclic pyridinones 3a-d , which were converted to the respective chloro derivatives 4a-d by reaction with phosphorus oxychloride. Reduction of the chloro compounds over palladium-charcoal yielded compounds 5a-d respectively. All the compounds 2 to 5 were characterized by elemental analysis and spectral data. The H and 13C nmr and electronic spectral features of the furodipyridines were discussed comparing with those of the parent furopyridines.  相似文献   
6.
A simple synthesis of furo[2,3-c]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxyisonicotinate ( 2 ) is described. The hydroxy ester 2 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 3a or 3b . Cyclization of compound 3a afforded ethyl 3-hydroxyfuro [2,3-c]pyridine-2-carboxylate ( 4 ) which was hydrolyzed and decarboxylated to give furo[2,3-c]pyridin-3(2H)-one ( 5a ). Cyclization of 3b gave the 2-methyl derivative 5b . Reduction of 5a and 5b with sodium borohydride yielded the corresponding hydroxy derivative 6a and 6b , respectively, which were dehydrated with phosphoric acid to give furo[2,3-c]pyridine ( 7a ) and its 2-methyl derivative 7b . 4-Acetylpyridin-3-ol ( 8 ) was O-alkylated with ethyl bromoacetate to give ethyl 2-(4-acetyl-3-pyridyloxy) acetate ( 9 ). Saponification of compound 9 , and the subsequent intramolecular Perkin reaction gave 3-methylfuro[2,3-c]pyridine ( 10 ). Cyclization of 9 with sodium ethoxide gave 3-methylfuro[2,3-c]pyridine-2-carboxylic acid, which in turn was decarboxylated to give compound 10 .  相似文献   
7.
A new method for regioselective carbomagnesation of alkenes and dienes has been developed by the use of a titanocene catalyst. This reaction proceeds efficiently at 0 degrees C in THF in the presence of Cp(2)TiCl(2) by the combined use of organic halides (R-X; R = alkyl, aryl and vinyl) and n-BuMgCl to afford benzyl, alpha-silylalkyl, or allyl Grignard reagents, which were trapped with various electrophiles. The present reaction involves (i) addition of carbon radicals toward alkenes or dienes in the carbon-carbon bond-forming step and (ii) transmetalation on Ti of benzyl-, alpha-silylalkyl-, or allyltitanocene with n-BuMgCl in the carbon-magnesium bond-forming step. The scope and limitations of this reaction have also been examined.  相似文献   
8.
Variable benzo[b]furan derivatives having (E)- and (Z)-2-alkylcarbamoyl-1-methylvinyl groups at the 2-, 4- and 5-positions and a carboxylpropoxy or (1-phenyl)ethoxy group at the 7-position were prepared to find novel and selective leukotriene B4(LTB4) receptor antagonists. (E)-2-(2-diethylcarbamoyl-1-methylvinyl)-7-(1-phenylethoxy)benzo[b]furan (4v) showed selective inhibition to the human BLT2 receptor (hBLT2). On the other hand, (E)-2-acetyl-4-(2-diethylcarbamoyl-1-methylvinyl)-7-(1-phenylethoxy)benzo[b]furan (7v) inhibited both human BLT(1) receptor (hBLT1) and hBLT2. The (E)-2-(2-diethylcarbamoyl-1-methylvinyl) group lay on approximately the same plane as the benzo[b]furan ring, whereas the (E)-4-(2-diethylcarbamoyl-1-methylvinyl) group had the torsion angle (45.7 degree) from the benzo[b]furan ring plane. However, the (Z)-(2-alkylcarbamoyl-1-methylvinyl)benzo[b]furans were inactive. The inhibitory activity depended on the conformation of the 2-diethylcarbamoyl-1-methylvinyl group.  相似文献   
9.
Chlorination of the N-oxides of furo[2,3-b]- 1a , -[2,3-c]- 1b and -[3,2-c]pyridine 1c with phosphorus oxychloride afforded compounds substituted normally at the α- or λ-position to the ring nitrogen, 2a, 2′a, 2b, 2c, 2′c and 2′c , and in addition, in the case of 1b , compounds substituted on the furan ring, 2′b and 2″b . The structures of these compounds were confirmed from their ir, nmr and mass spectra. The major chlorinated products 2a, 2b and 2c were converted to methoxy- 5a, 5b and 5c , N-pyrrolidyl- 7a, 7b and 7c , and phenylthiofuropyridines 8a, 8b , and 8c .  相似文献   
10.
Hematopoietic stem and progenitor cell (HSPC) transplantation is a curative treatment of hematological disorders that has been utilized for several decades. Although umbilical cord blood (UCB) is a promising source of HSPCs, the low dose of HSPCs in these preparations limits their use, prompting need for ex vivo HSPC expansion. To establish a more efficient method to expand UCB HSPCs, we developed the bioactive peptide named SL-13R and cultured UCB HSPCs (CD34+ cells) with SL-13R in animal component-free medium containing a cytokine cocktail. Following 9 days of culture with SL-13R, the numbers of total cells, CD34+, CD38− cells, and hematopoietic stem cell (HSC)-enriched cells were significantly increased relative to control. Transplantation of cells cultured with SL-13R into immunodeficient NOD/Shi-scid/IL-2Rγ knockout mice confirmed that they possess long-term reconstitution and self-renewal ability. AHNAK, ANXA2, and PLEC all interact with SL-13R. Knockdown of these genes in UCB CD34+ cells resulted in reduced numbers of hematopoietic colonies relative to SL-13R-treated and non-knockdown controls. In summary, we have identified a novel bioactive peptide SL-13R promoting expansion of UCB CD34+ cells with long-term reconstitution and self-renewal ability, suggesting its clinical use in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号