首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
数理化   20篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1990年   4篇
  1988年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
There exist a sufficient condition for the existence of at least one periodic solution for a type of second order autonomous ordinary differential equations. The correctness of the condition has been pointed out by Schauder's fixed point theorem. In order to indicate the validity of the assumptions made, two illustrative examples, showing its application in the nonlinear vibration and relaxation oscillation are presented.  相似文献   
5.
Vibration of a finite Euler–Bernoulli beam, supported by non-linear viscoelastic foundation traversed by a moving load, is studied and the Galerkin method is used to discretize the non-linear partial differential equation of motion. Subsequently, the solution is obtained for different harmonics using the Multiple Scales Method (MSM) as one of the perturbation techniques. Free vibration of a beam on non-linear foundation is investigated and the effects of damping and non-linear stiffness of the foundation on the responses are examined. Internal-external resonance condition is then stated and the frequency responses of different harmonics are obtained by MSM. Different conditions of the external resonance are studied and a parametric study is carried out for each case. The effects of damping and non-linear stiffness of the foundation as well as the magnitude of the moving load on the frequency responses are investigated. Finally, a thorough local stability analysis is performed on the system.  相似文献   
6.
Nonlinear vibration of micromachined asymmetric resonators   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamics of a beam-type resonant structure due to stretching of the beam is addressed. The resonant beam is excited by attached electrostatic comb-drive actuators. This structure is modeled as a thin beam-lumped mass system, in which an initial axial force is exerted to the beam. This axial force may have different origins, e.g., residual stress due to micro-machining. The governing equations of motion are derived using the mode summation method, generalized orthogonality condition, and multiple scales method for both free and forced vibrations. The effects of the initial axial force, modal damping of the beam, the location, mass, and rotary inertia of the lumped mass on the free and forced vibration of the resonator are investigated. For the case of the forced vibration, the primary resonance of the first mode is investigated. It has been shown that there are certain combinations of the model parameters depicting a remarkable dynamic behavior, in which the second to first resonance frequencies ratio is close to three. These particular cases result in the internal resonance between the first and second modes. This phenomenon is investigated in detail.  相似文献   
7.
An investigation into the dynamics of vehicle-occupant-structure-induced vibration of bridges traversed by moving vehicles is presented. The vehicle including the driver and passengers is modelled as a half-car planar model with six degrees-of-freedom, and the bridge is assumed to obey the Euler-Bernoulli beam theory with arbitrary conventional boundary conditions. Due to the continuously moving location of the variable loads on the bridge, the governing differential equations become rather complicated. The numerical simulations presented here are for the case of vehicle travelling at a constant speed on a uniform bridge with simply supported end conditions. The relationship between the bridge vibration characteristics and the vehicle speed is rendered, which yields into a search for a particular speed that determines the maximum values of the dynamic deflection and the bending moment of the bridge. Results at different vehicle speeds demonstrate that the maximum dynamic deflection occurs at the vicinity of the bridge mid-span, while the maximum bending moment occurs at ±20% of the mid-span point. It is shown that one can find a critical speed at which the maximum values of the bridge dynamic deflection and the bending moment attain their global maxima.  相似文献   
8.
A method is presented to predict the root mean square displacement response of an open curved thin shell structure subjected to a turbulent boundary-layer-induced random pressure field. The basic formulation of the dynamic problem is an efficient approach combining classic thin shell theory and the finite element method, in which the finite elements are flat rectangular shell elements with five degrees of freedom per node. The displacement functions are derived from Sanders’ thin shell theory. A numerical approach is proposed to obtain the total root mean square displacements of an open curved thin structure in terms of the cross spectral density of random pressure fields. The cross spectral density of pressure fluctuations in the turbulent pressure field is described using the Corcos formulation. Exact integrations over surface and frequency lead to an expression for the total root mean square displacement response in terms of the characteristics of the structure and flow. An in-house program based on the presented method was developed. The total root mean square displacements of a curved thin blade subjected to turbulent boundary layers were calculated and illustrated as a function of free stream velocity and damping ratio. A numerical implementation for the vibration of a cylinder excited by fully developed turbulent boundary layer flow was presented. The results compared favorably with those obtained using software developed by Lakis and Païdoussis (J. Sound Vib. 25 (1972) 1–27) using cylindrical elements and a hybrid finite element method.  相似文献   
9.
Rapid progress in the application of biotechnological methodologies and development of genetically modified crops in Iran necessitated intensive efforts to establish proper organizations and prepare required rules and regulations at the national level to ensure safe application of biotechnology in all pertinent aspects. Practically, preparation of a national biotechnology strategic plan in the country coincided with development of a national biosafety framework that was the basis for the drafted biosafety law. Although biosafety measures were observed by researchers voluntarily, the establishment of national biosafety organizations since the year 2000 built a great capacity to deal with biosafety issues in the present and future time, particularly with respect to food and agricultural biotechnology.  相似文献   
10.
Nonlinear harmonic vibration of a micro-electro-mechanical beam is investigated, and the micro-actuator, which is considered in this study, is a special kind of electrostatic symmetric actuators. A fully clamped micro-beam with a uniform thickness is modeled as an electrostatic micro-actuator with two symmetric potential walls. The nonlinear forced vibration of the micro-beam is analyzed, and the non-dimensional governing equation of motion, using the Galerkin method, is developed. Higher-order nonlinear terms in the equation of motion are taken into account for the first time, and the perturbation method is utilized regarding these terms and hence, all the resonant cases have been considered. The multiple scales method is employed to solve the nonlinear equations, and therefore, the problem does not deal with the large deformations. The primary and secondary resonance conditions are determined, and the corresponding secular terms in each case are recognized. Harmonic responses are obtained for different cases of resonance, and eventually, the stable and unstable portions of the responses are identified. A parametric sensitivity study is carried out to examine the effects of different parameters on the amplitude–frequency characteristic equations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号