首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
工业技术   5篇
  2023年   2篇
  2022年   3篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
目的 优化加工工艺,改善合金的组织,提高合金的力学性能。方法 采用金相(OM)观察、拉伸试验和X射线衍射,分析在大应变轧制下冷轧结合T6态处理后板材的成形性能,引入Williamson-Hall模型和Taylor函数,分析合金内部位错密度的变化规律及其对力学性能的影响。结果 随着前期轧制温度从350 ℃升高到400 ℃,合金晶粒得到明显细化,再结晶充分,晶粒尺寸细小,晶界处第二相粗大;冷轧后晶粒破碎严重,晶粒的碎化方向与轧制方向垂直;在350 ℃时,合金内部的位错密度为1.62×1015 m?2,位错密度对强度的贡献值为219.5 MPa,其抗拉强度最大为602 MPa、屈服强度为512 MPa、伸长率为12.6%。结论 Al?4.5Cu?1.5Mg?0.5Zr合金的晶粒组织明显细化,其力学性能得到提升。  相似文献   
2.
使用光学显微镜、动态机械热分析仪、X射线衍射仪和扫描电镜研究了不同轧制变形量对Mg-4Zn-2Y和Mg-4Zn-4Y合金显微组织、力学性能及阻尼性能的影响。结果表明,经轧制后合金中出现片层状的LPSO相;两种合金阻尼性能中与应变振幅无关的阻尼性能Q-10随着轧制变形量的增加,其变化趋势基本一致,与应变振幅相关的阻尼性能Q-1h随着轧制变形量的增加而降低,Mg-4Zn-2Y合金以及Mg-4Zn-4Y合金的阻尼机制为位错型阻尼;随着轧制变形量的增加,合金断口中的韧窝数量增加,解理面减少,主要断裂方式由脆性断裂转变为韧性断裂;相同轧制变形量下,Mg-4Zn-4Y合金的强度优于Mg-4Zn-2Y合金,而阻尼性能要低于Mg-4Zn-2Y合金。  相似文献   
3.
在不同温度下对Al-4.5Cu-1.5Mg-0.1Sc进行大应变轧制,采用光学显微镜、扫描电镜、能谱分析及拉伸试验等研究轧制温度对合金显微组织与力学性能的影响。结果表明,热轧温度400 ℃时,Al-4.5Cu-1.5Mg-0.1Sc铝合金再结晶充分,晶粒尺寸细小均匀,结合热处理可有效改善基体中第二相分布不均现象; 400 ℃热轧并T6态处理后合金综合力学性能较好,抗拉强度为455 MPa,伸长率为21.8%; 合金断裂形式为韧性断裂,断口上分布着大量细小的韧窝。  相似文献   
4.
通过对轧制态Mg-4Zn-2Y合金在不同热变形温度以及应变速率下进行高温拉伸试验,研究了Mg-4Zn-2Y合金在不同工艺参数下进行热变形时流变应力的变化规律,并绘制了热加工图。结果表明,流变应力与变形温度以及应变速率均有关系,热变形温度不变时,材料的最大流变应力会随着应变速率的提高而增大;在应变速率不变时,材料的最大流变应力随着变形温度的升高会逐渐下降。采用双曲正弦修正的本构模型确定了轧制态Mg-4Zn-2Y合金的变形激活能Q=242 233.2 J·mol-1,应力指数n=8.09。通过热加工图确定了Mg-4Zn-2Y合金的可加工区域为472.15~545.00 K,10-3~10-4 s-1和545.00~672.15 K,10-4~10-1 s-1。  相似文献   
5.
首先采用虚拟路面整车模型动态提载的方法确立了原钢制副车架各硬点在典型工况下的载荷,以此载荷作为铝合金副车架拓扑优化概念设计阶段的载荷输入。在Hypermesh的Optistruct模块对原副车架包络体进行拓扑优化,将体积百分比和加权柔度作为优化响应,以最小化加权柔度为目标,以体积百分比为约束条件,并引入对称约束与制造约束,进行多工况拓扑优化,获得了副车架最佳受力结构。采用材料替换的方法以铝代钢,拓扑优化概念设计后的副车架在不低于原副车架性能目标的前提下实现减重1.84kg,轻量化率达11.5%。通过对概念阶段的铝合金副车架进行性能分析,结果表明,铝合金副车架满足设计要求,此方法对于副车架概念设计阶段具有一定的可行性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号