首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   6篇
  国内免费   2篇
工业技术   102篇
  2023年   2篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   11篇
  2008年   9篇
  2007年   10篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
Pressureless sintering approaches provide a simple avenue to manufacture dense ceramic parts with minimal processing equipment, but current pressureless sintering techniques have yet to demonstrate capabilities of producing dense ceramics while maintaining sub-50 nm grain sizes. Nanocrystalline yttria stablized zirconia ceramics were process from 4 mol% yttria stablized zirconia (4YSZ) nanopowders with a crystallite size of 7.5 nm using dry cold isostatic pressing (CIP) where powders are dried immediately prior to green compact formation and CIP vacuum bagging. It is shown that CIP pressures >75 000 psi (517 MPa) effectively remove pores larger than 100 nm and that pressureless sintering occurs at reduced temperatures for green densities ≥50%. Though the sintering kinetics are shown to be similar to other zirconia nanopowder sintering studies, the small initial crystallize size and reduced sintering temperature allowed densities as high as 97.2%, while retaining a ceramic grain size at or below 40 nm. Produced nanocrystalline 4YSZ ceramics with a grain size of 30.3 nm and a density of 96.3% had Vicker's hardnesses as high as 14.2 GPa and Vicker's indentation fracture resistance of 3.43 MPa·, demonstrating that simple processing approaches can be refined to fabricate nanocrystalline ceramics while maintaining high hardness and indentation fracture resistance.  相似文献   
2.
This paper presents a compact and unified hardware architecture implementing SHA-1 and SHA-256 algorithms that is suitable for the mobile trusted module (MTM), which should satisfy small area and low-power condition. The built-in hardware hash engine in a MTM is one of the most important circuit blocks and dominates the performance of the whole platform because it is used as a key primitive to support most MTM commands concerning to the platform integrity and the command authentication. Unlike the general trusted platform module (TPM) for PCs, the MTM, that is to be employed in mobile devices, has very stringent limitations with respect to available power, circuit area, and so on. Therefore, MTM needs the spatially optimized architecture and design method for the construction of a compact SHA hardware. The proposed hardware for unified SHA-1 and SHA-256 component can compute a sequence of 512-bit data blocks and has been implemented into 12,400 gates of 0.25 μm CMOS process. Furthermore, in the processing speed and power consumption, it shows the better performance in comparison with commercial TPM chips and software-only implementation. The highest operation frequency and throughput of the proposed architecture are 137 MHz and 197.6 Mbps, respectively, which satisfy the processing requirement for the mobile application.  相似文献   
3.
Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.  相似文献   
4.
The design and growth of GaN/InGaN heterojunction bipolar transistors (HBTs) by metalorganic chemical vapor deposition (MOCVD) are studied. Atomic-force microscopy (AFM) images of p+InGaN base layers (∼100 nm) deposited under various growth conditions indicate that the optimal growth temperature is limited to the range between 810 and 830°C due to a trade-off between surface roughness and indium incorporation. At these temperatures, the growth pressure must be kept above 300 Torr in order to keep surface pit density under control. An InGaN graded-composition emitter is adopted in order to reduce the number of V-shaped defects, which appear at the interface between GaN emitter and InGaN base and render an abrupt emitter-base heterojunction nearly impossible. However, the device performance is severely limited by the high p-type base contact resistance due to surface etching damage, which resulted from the emitter mesa etch.  相似文献   
5.
The mechanical performance of woven composites was analyzed focusing on their nonlinear and rate dependent asymmetric/anisotropic deformation behavior. Three key characteristics were identified which are indispensable for realistically simulating the mechanical performance of woven composites: the asymmetric material behavior between tension and compression, its anisotropic and nonlinear evolution and rate dependency. To include all three characteristics into the nonlinear finite element analysis for woven composites, a phenomenological constitutive equation was developed based on an elasto-viscoplastic theory using the modified Drucker–Prager yield criterion and, in particular, developing the anisotropic nonlinear hardening law. A characterization method using both uniaxial tensile and compressive tests at different strain rates was proposed to determine the material properties for the constitutive equation. Then, the developed constitutive equation was incorporated into a finite element code and was validated by comparing the finite element simulation of the three points bending test with experiments.  相似文献   
6.
AlxGa1-xN (x=0.05) ultraviolet (UV) avalanche photodiodes grown on a GaN substrate are reported. The epitaxial structure was grown by metal-organic chemical vapor deposition on a free-standing bulk GaN substrate having low dislocation density. The growth conditions for AlxGa1-xN epitaxial layers on GaN substrates were optimized to achieve improved crystalline and structural quality. With UV illumination at lambda~250 nm, devices with mesa diameters of ~30 mum achieve stable maximum optical gains of ~50 at a reverse bias voltage of ~87 V.  相似文献   
7.
8.
Fire is a major risk in the event of subway train fire due to coincidence with direction of smoke flow and evacuation. As a part of an effort to improve the life safety in a train fire, the platform screen door (PSD) is more and more installed on the ground that PSD provides a lot of benefits to passenger’s safety. Therefore, the investigation of effect of PSD on life safety is needed. In this study, fire simulation and evacuation simulation are performed to estimate the effect of PSD and ventilation on passenger’s life safety in a subway train fire. The Fire Dynamics Simulator (FDS V406) code is used to predict smoke spread and the available safe egress time during the fire. The evacuation of a subway station due to a train fire is simulated to predict the time required for evacuation, obtaining travel speed as a function of density. The passengers in platform with PSD and ventilation system have much more available time of about 350 s than passengers in case without PSD and ventilation system in modeled subway station. The subway turnstiles (ticket gate) dramatically increase the time required for evacuation without moving toward exits and bring passenger’s life safety danger in a subway train fire.  相似文献   
9.
The deformation behavior of woven composites at high strain rates was analyzed using a constitutive equation developed to describe the nonlinear, anisotropic/asymmetric and rate-dependent mechanical behavior of woven composites. The rate-dependent nonlinear behavior of woven composites was characterized at high strain rates (1 s−1 to 100 s−1) using a tensile testing method first proposed in this research. The material properties for the developed constitutive equation were determined and subsequently used in a finite element analysis of the deformation behavior of woven composites at high strain rates. Finally, the impact behavior of woven composites was predicted using the constitutive equation and the results were compared with experiments, showing that the current constitutive equation including the characterization method is adequate to describe the deformation behavior of woven composites at high strain rates up to impact level.  相似文献   
10.
In order to overcome severe capacity fading of LiMn2O4/graphite Li-ion cells at high temperature at 60 °C, fluoroethylene carbonate (FEC) was newly evaluated as an electrolyte additive. With 2 wt.% FEC addition into the electrolyte (EC/DEC/PC with 1 M LiPF6), the capacity retention at 60 °C after 130 cycles was significantly improved by about 20%. To understand the underlying principle on the capacity retention enhancement, the electrochemical properties of the cells including cell performance, impedance behavior as well as the characteristics of the interfacial properties were examined. Based on these results, it is suggested that the improved capacity retention of LiMn2O4/graphite Li-ion cells with addition of FEC especially at high temperature is mainly originated from the thin and stable SEI layer formed on the graphite anode surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号