首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
数理化   4篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
黏土矿物有机插层复合物作为重要的功能材料现已被广泛应用于吸附、化工和环保等众多领域.采用插层法将十六烷基三甲基氯化铵(CTAC)插入到黏土矿物高岭石、钠基蒙脱石和蛭石层间,利用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、热重-差示扫描量热(TG-DSC)及扫描电镜(SEM)等表征方法对插层复合物的作用机理及结构进行研究.结果表明:高岭石在经过多次"替代"插层后,层间氢键被破坏,层间作用力减弱,CTAC分子进入其层间,这引起高岭石片层由于层间的束缚力释放形成卷曲形貌.蒙脱石与蛭石以离子交换的形式与CTAC分子发生反应,该过程尚未对它们的形貌产生明显影响.此外,进一步建立了黏土矿物-CTAC插层复合物的结构模型,提出CTAC分子在高岭石和蒙脱石层间分别以35°和32°的夹角双层斜立,在蛭石层间以44°的夹角单层斜立.  相似文献   
2.
目前对高岭石/二甲基亚砜(Kaol-DMSO)和高岭石/甲醇(Kaol-Me)复合物的研究大多局限于对其表面特征分析,鲜有对其脱嵌动力学特征研究的报道.本文在综合分析Kaol-DMSO和Kaol-Me复合物结构的基础上,重点针对其脱嵌动力学特征进行分析.结果表明:与二甲基亚砜(DMSO)分子依靠氢键结合在高岭石晶层间不同,甲醇(Me)分子是取代高岭石晶层八面体结构中Al-OH的-H形成甲氧基嫁接在晶层中.由于DMSO和Me在高岭石层间有着两种不同的存在状态,所以Kaol-Me复合物的活化能大于Kaol-DMSO插层复合物的活化能.活化能的大小反映了其结构的稳定性,据其活化能值推断Kaol-Me复合物的稳定性大于Kaol-DMSO插层复合物.  相似文献   
3.
碳排放量的快速增长所引起的全球气候变暖问题越来越受到各国的关注,因此研发制备可行高效的二氧化碳(CO2)捕获材料具有极其重要的意义。本文以高岭石为原材料,采用煅烧-碱活化-酸刻蚀的方法,制备出介孔氧化硅载体(KNH),再将KNH经过五乙烯六胺(PEHA)修饰后制备出介孔复合材料(KNH-PEHA)。通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、N2物理吸附等方法对样品进行表征,并进一步对样品进行CO2吸附性能研究。结果表明,PEHA的浸渍修饰并未改变载体的结构,但显著提高了介孔复合材料对CO2的吸附能力。吸附温度为25 ℃,KNH的CO2吸附量为147.39 cm3/g,而PEHA质量分数为30%的KNH(KNH-P-30)平衡时的CO2吸附量达到389 cm3/g,远高于未经PEHA修饰的KNH的吸附量,同时提出了该固体吸附剂对CO2的吸附机理,为高岭石在气体吸附领域的应用提供一个新思路。  相似文献   
4.
碱式硫酸镁晶须的分子式为xMgSO4·yMg(OH)2·zH2O,是一种人工合成具有一定长径比的无机功能材料.作为填充剂,可提高材料的抗拉强度等机械性能,也可以起到阻燃的作用.在NH4+-NH3缓冲体系,用常压一步法制备长度为10~30μm,直径为0.05~0.3μm,长径比为30~150的MgSO4·5Mg(OH)2·3H2 O晶须.采用XRD、SEM、TG、TEM对产品进行表征,结合表征结果对反应浓度、反应温度、反应时间和陈化时间等影响因素进行研究.对碱式硫酸镁的生成机理进行第一性原理分析,碱式硫酸镁晶须生长习性符合位错螺旋生长机制.采用缓冲体系稳定溶液酸碱性,降低反应溶液的非理想性,可以使晶体在非受迫情况下定向生长,为进一步工业应用,实现低能耗生产碱式硫酸镁晶须提供了重要参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号