首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   4篇
  国内免费   1篇
工业技术   24篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
对热轧态Al-15Zn-0.5Mg-0.5Sc合金进行固溶+时效和固溶+冷轧+时效处理,利用光学显微镜、扫描电镜、透射电镜和万能力学试验机等研究了各状态合金的微观组织及力学性能。结果表明,冷轧可使饱和Al-Zn固溶体分解,并动态析出Zn相,同时冷轧还促使合金晶粒细化以及位错增殖。人工时效可使合金内析出高密度η′相,而冷轧所导致的高密度位错促进了析出过程并加速了η′相向η相的转变。时效前冷轧可明显优化Al-15Zn-0.5Mg-0.5Sc合金的力学性能,Al-15Zn-0.5Mg-0.5Sc合金经固溶+冷轧+70 ℃人工时效后,其屈服强度和极限抗拉强度分别为413和462 MPa,其强化机理包括细晶强化、位错强化和析出强化。而120 ℃时效会加速位错湮灭,从而削弱位错强化效果。  相似文献   
2.
许多自然场景图像中都包含丰富的文本,它们对于场景理解有着重要的作用。随着移动互联网技术的飞速发展,许多新的应用场景都需要利用这些文本信息,例如招牌识别和自动驾驶等。因此,自然场景文本的分析与处理也越来越成为计算机视觉领域的研究热点之一,该任务主要包括文本检测与识别。传统的文本检测和识别方法依赖于人工设计的特征和规则,且模型设计复杂、效率低、泛化性能差。随着深度学习的发展,自然场景文本检测、自然场景文本识别以及端到端的自然场景文本检测与识别都取得了突破性的进展,其性能和效率都得到了显著提高。本文介绍了该领域相关的研究背景,对基于深度学习的自然场景文本检测、识别以及端到端自然场景文本检测与识别的方法进行整理分类、归纳和总结,阐述了各类方法的基本思想和优缺点。并针对隶属于不同类别下的方法,进一步论述和分析这些主要模型的算法流程、适用场景和技术发展路线。此外,列举说明了部分主流公开数据集,对比了各个模型方法在代表性数据集上的性能情况。最后总结了目前不同场景数据下的自然场景文本检测、识别及端到端自然场景文本检测与识别算法的局限性以及未来的挑战和发展趋势。  相似文献   
3.
利用Gleeble-3500热力模拟实验机研究AA6061铝合金铸坯平面压缩变形行为,分析其流变应力和组织演变规律。结果表明:平面压缩过程中流变应力随着变形温度的升高和应变速率的减小而逐渐降低;低温和低应变速率下(573 K/0.01 s~(-1)),随着应变量增大,达到峰值应力后应力软化程度较大。同时,建立了描述AA6061铝合金铸坯平面压缩变形行为的双曲正弦型本构关系模型。大变形区的晶粒呈扁长的板条状,其晶界处有大量的第2相析出,晶粒的长径比随温度升高而减小,随应变速率增大而增大,小变形区晶粒组织形貌主要为椭圆形等轴状晶;高温下(723 K),部分第2相溶入晶粒内部,热变形组织演变机理主要为动态回复。  相似文献   
4.
5.
研究了添加Sc元素对7055铝合金铸造、均匀化处理、轧制和固溶时效过程的微观结构演化以及力学性能的影响。结果表明,向7055溶液中添加质量分数为0.25%的Sc导致在铸造过程中形成初生Al3(Sc,Zr)相。这个相能促使合金发生非均质形核,显著细化合金的铸造组织。在7055-Sc铝合金的均匀化处理过程中析出高密度纳米Al3(Sc,Zr)相,不但能抑制晶粒粗化,而且在后期轧制变形和固溶时效处理过程中还起钉扎晶界、抑制回复与再结晶、保留纤维组织的作用。与7055铝合金相比,7055-Sc铝合金的晶粒尺寸更小,因此具有更有效的细晶强化效应。添加Sc的时效处理态7055铝合金的最大抗拉强度和显微硬度,分别提高到642 MPa和218 HV。  相似文献   
6.
采用热轧法制备出具有颗粒层状结构的6061p/7075铝基复合材料以改善7075铝合金的阻尼性能。通过OM、SEM、EDS和XRD分析6061p/7075层状铝基复合材料的微观组织,分别采用万能力学试验机和动态热机械分析仪分析其力学性能和阻尼行为。研究表明,6061铝颗粒层存在大量的颗粒间界面和微小孔隙,6061铝颗粒层与7075铝基体之间界面结合良好,没有发生界面反应;6061p/7075层状铝基复合材料最大抗拉强度为370.5 MPa,比7075铝基体提高了30%;6061p/7075层状铝基复合材料和基体材料的内耗值分别随着温度和应变量的升高而增大,复合材料的阻尼性能明显优于7075铝基体,在360℃时,复合材料的内耗值高达0.117,比7075铝基体提高了149%;6061p/7075层状铝基复合材料和基体材料的储能模量分别随着温度和应变量的升高而降低,在30℃时,复合材料的储能模量为38601 MPa,比7075铝基体高16%。   相似文献   
7.
铝合金环形零件作为关键连接、传动、回转和支承部件在重型运载火箭贮箱、风电设备的轴承套圈及齿轮环、压力容器和核反应堆的加强圈等重大装备制造领域应用非常广泛.铝合金环形零件的生产是一个高能耗的热加工过程,现有生产工艺主要有两种:(1)厚板轧制-弯卷-对半焊接成形,环件焊接部位缝组织为弱性能区,无法满足在重载、冲击、高低温和强腐蚀等极端恶劣条件下长期稳定服役时的要求;(2)圆铸锭坯-多向锻造制坯-马架扩孔或环件辗扩,工艺流程冗长,辗扩前开坯、锻造和冲孔工序设备资金投入巨大,多次加热导致能源消耗和材料浪费严重,不利于环境友好型生产.深空探测领域铝合金环件存在几何尺度大、形状精度高、结构刚度低和服役环境苛刻等技术挑战,目前已实现Φ3 m~Φ10 m级大型铝合金环件辗扩生产.环件辗扩过程中的传热-变形-组织演变耦合行为使得环坯经历了多场、多因素作用下多道次、连续局部加载与卸载、不均匀变形和微观组织复杂演变历程.为了实现铝合金环件的辗扩成形,一是要使环件自身整体刚性和辗扩过程稳定,即"控稳";二是要使环件直径扩大与截面充填协同进行,同步获得径-轴向尺寸、截面轮廓及几何精度,即"控形";三是要使成形环件达到所要求的内部组织状态和各向性能,即"控性".铝合金环形零件用环坯的制备是铝合金环件辗扩成形及其形/性一体化调控的基础,采用多向锻造变形技术可以有效细化大规格圆铸锭的粗大组织、破碎网状共晶化合物,实现组织改性,为后续辗扩过程提供优质环坯.通过开发铝合金环件双向辗扩智能建模仿真方法和基于力控的铝合金环件双向辗扩工艺路径智能仿真优化方法,解决了矩形/异形截面环件径-轴向变形区不协调、环件刚度弱及辗扩过程失稳等问题,实现了各轧辊运动的协调匹配和基于目标驱动的自动调控.利用辗扩成形后的形变强化和热处理时效析出强化改性技术,可以进一步提高环件强度和消除残余应力,使环件径向、轴向和周向均具有优良的性能.针对现有技术的不足,本文提出了环形零件短流程铸辗复合成形技术,将砂型铸造或离心铸造获得的环形铸坯加热后直接进行辗扩,在热辗扩过程中同时实现环形铸坯几何尺寸精度要求和组织与性能改善,揭示了基于织构演变的铸坯环件在热辗扩成形中的微观组织和性能控制机制,可为铝合金环件及铝基双金属层状复合环件的短流程形/性一体化制造提供理论指导.本文基于铝合金环形零件形/性一体化制造技术的研究现状,从铝合金环形零件用环坯的制备技术、铝合金环件辗扩成形技术和铝合金环件辗扩过程中组织与性能协同调控技术研究等方面做简要评述,着重阐述铝合金矩形/异形截面环件形/性一体化控制的技术挑战,提出铝合金环件制造技术的发展趋势及研究重点,以期推动铝合金环件/铝基双金属层状复合环件短流程制造过程中形/性一体化调控理论与技术的发展.  相似文献   
8.
张军  刘崇宇 《材料工程》2020,(11):131-139
以7055Al为基体,通过粉末冶金法分别制备碳化硅(SiC)颗粒、碳纳米管(CNT)以及SiC和CNT混杂增强7055Al复合材料,并对三种复合材料的干滑动摩擦磨损行为进行研究。结果表明:随着载荷提高,复合材料磨损失重增加,摩擦因数略有降低。在0.5 MPa与1.0 MPa载荷条件下,SiC-CNT/7055Al复合材料磨损失重低于单一SiC/7055Al和单一CNT/7055Al复合材料。2.0 MPa时,SiC-CNT/7055Al复合材料磨损失重急剧增加。随着载荷提高,CNT/7055Al复合材料耐磨性逐渐增加,在中、高载荷下,材料具有更为优异的耐磨性。SiC/7055Al复合材料磨损量则随着载荷提高,磨损失重逐渐增加,当载荷为2.0 MPa时,材料磨损量增加幅度较小。  相似文献   
9.
在7055合金成分基础上添加0.14%的Zr及0.15%的Sc,获得7055-0.14Zr-0.15Sc合金。对比该合金与7055合金的铸造、均匀化、轧制及T6态的微观组织与力学性能。研究发现,由Zr、Sc添加所形成的初生Al_3(Sc,Zr)相在铸造过程中起到促进非均质形核、细化合金组织的作用。均匀化热处理促使纳米Al_3(Sc,Zr)相析出,该相在热变形及固溶时效处理过程中起到钉扎晶界的作用,进而显著地抑制了晶粒粗化。因此,与7055合金相比,7055-0.14Zr-0.15Sc合金具有更高的强度及塑性。  相似文献   
10.
结合科研热点、科技论文阅读,从课堂教学、实验教学和考核形式几个方面改革金属材料方向本科生的材料现代分析方法的教学过程,以激发学生的学习兴趣,改善教学效果,提高学生的创新能力和科技论文写作能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号