排序方式: 共有72条查询结果,搜索用时 22 毫秒
1.
2.
The Soultz Enhanced Geothermal System (EGS) reservoir's response to chemical stimulation is assessed by numerical simulation of coupled thermo-hydraulic-chemical processes. To assess chemical interactions between host rocks and a mixture of HCl and HF as well as its potential effects on the Soultz EGS reservoir, new modelling efforts using the FRACHEM code have been initiated. This article presents the model calibration and results. Simulations consider realistic conditions with available data sets from the EGS system at Soultz. Results indicate that the predicted amount of fracture sealing minerals dissolved by injection of a mixture of acids Regular Mud Acid (RMA) was consistent with the estimated amount from the test performed on GPK4 well at Soultz EGS site. Consequently reservoir porosity and permeability can be enhanced especially near the injection well by acidizing treatment. 相似文献
3.
XiaoMin Wang Ying Guan HuiYang Cai Sandrine Costamagno LiMin Zhang ChunHua Xu Xing Gao 《中国科学:地球科学(英文版)》2016,59(8):1642-1651
Laoya Cave is a long-term occupation site of Late Paleolithic humans in the Yunnan-Guizhou Plateau, southwest China, where abundant lithic, bone materials were recovered. Dating by the AMS technique showed a significant depositional process during marine isotope stage (MIS) 3/2. In this study, the species spectrum was presented from the perspective of zooarchaeology and the mortality profile of large Cervidae was examined to help increase our understanding of the subsistence strategy of local people dealing with climate and environmental changes. The main part of the diet was focused on large Cervidae, and the dominance of Ungulates indicates effective management of the cave and local fauna. On the other hand, the mortality profiles of large Cervidae varied correspondingly with climate change. The evidence indicates a specialized hunting strategy that was also flexible, depending on the prevailing climate and environment. 相似文献
4.
Frédéric Hourdin Ionela Musat Sandrine Bony Pascale Braconnot Francis Codron Jean-Louis Dufresne Laurent Fairhead Marie-Angèle Filiberti Pierre Friedlingstein Jean-Yves Grandpeix Gerhard Krinner Phu LeVan Zhao-Xin Li François Lott 《Climate Dynamics》2006,27(7-8):787-813
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. 相似文献
5.
Stephane C. Alfaro Valentina Flores‐Aqueveque Gilles Foret Sandrine Caquineau Gabriel Vargas Jose A. Rutllant 《地球表面变化过程与地形》2011,36(7):923-932
As previously observed in marine sediments collected downwind of African or South American continental sources, recent studies of sediment cores collected at the bottom of Mejillones Bay in north Chile (23°S) show a laminated structure in which the amount of particles of aeolian origin and their size create significant differences between the layers. This suggests inter‐annual to inter‐decadal variations in the strength of the local southerly winds responsible for (1) the erosion of the adjacent hyperarid surface of the Mejillones Pampa, and (2) the subsequent transport of the eroded particles towards the bay. A simple model accounting for the vertical uptake, transport, and deposition of the particles initially set into motion by wind at the surface of the pampa is proposed. This model, which could be adapted to other locations, assumes that the initial rate of (vertical) uptake is proportional to the (horizontal) saltation flux quantified by means of White's equation, that particles are lifted to a height (H), increasing with the magnitude of turbulence, and that sedimentation progressively removes the coarsest particles from the air column as it moves towards the bay. In this model, the proportionality constant (A) linking the vertical flux of particles with the horizontal flux, and the injection height (H) control the magnitude and size distribution of the deposition flux in the bay. Their values are determined using the wind speed measured over the pampa and the size distribution of particles collected in sediment traps deployed in the bay as constraints. After calibration, the model is used to assess the sensitivity of the deposition flux to the wind intensity variations. The possibility of performing such quantitative studies is necessary for interpreting precisely the variability of the aeolian material in the sediment cores collected at the bottom of Mejillones Bay. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
The response of low-level clouds to climate change has been identified as a major contributor to the uncertainty in climate sensitivity estimates among climate models. By analyzing the behaviour of low-level clouds in a hierarchy of models (coupled ocean-atmosphere model, atmospheric general circulation model, aqua-planet model, single-column model) using the same physical parameterizations, this study proposes an interpretation of the strong positive low-cloud feedback predicted by the IPSL-CM5A climate model under climate change. In a warmer climate, the model predicts an enhanced clear-sky radiative cooling, stronger surface turbulent fluxes, a deepening and a drying of the planetary boundary layer, and a decrease of tropical low-clouds in regimes of weak subsidence. We show that the decrease of low-level clouds critically depends on the change in the vertical advection of moist static energy from the free troposphere to the boundary-layer. This change is dominated by variations in the vertical gradient of moist static energy between the surface and the free troposphere just above the boundary-layer. In a warmer climate, the thermodynamical relationship of Clausius-Clapeyron increases this vertical gradient, and then the import by large-scale subsidence of low moist static energy and dry air into the boundary layer. This results in a decrease of the low-level cloudiness and in a weakening of the radiative cooling of the boundary layer by low-level clouds. The energetic framework proposed in this study might help to interpret inter-model differences in low-cloud feedbacks under climate change. 相似文献
7.
Florian Malard Sandrine Plenet Janine Gibert 《Ground Water Monitoring & Remediation》1996,16(2):103-113
The use of invertebrates as biomonitors of ground water quality is a relatively new approach that has come of age with the development of ground water ecology. The benefits of such an approach are illustrated by four examples of field biomonitoring from several sites in various hydrogeological settings. Contamination of the interstitial zone by heavy metals in some sectors of the Rhóne River (France) was shown by the scarcity of insect species; sewage pollution in the saturated zone of a karstic aquifer was indicated by the low relative abundances of stygobites as compared with those of stygophiles and stygoxenes; and enrichment with organic matter of an underflow was clearly demonstrated by the extremely high density of ground water invertebrates such as oligochaetes, ostracods, and isopods. Examination of the spatial changes in the composition and abundance of invertebrate assemblages was also useful in determining the direction and intensity of water fluxes between a river and its underflow, as well as in delineating the reduced or oxidized zones in a manganese-polluted aquifer. Finally, the selected case studies emphasized the variety of methodological approaches that could be developed in ground water contamination biomonitoring, as well as the complementary and sometimes new information provided by this innovative method in comparison with that obtained by conventional pollution monitoring techniques. 相似文献
8.
Different diagenetic transformations and their relative chronological sequence are studied in the meteoric diagenetic zone from the Upper Oligocene limestone at the North of the Aquitaine Basin (France), by combining high-resolution cathodoluminescence spectroscopy and electron-microprobe analyses. More than 128 spot analyses by electron microprobe and 60 analyses by cathodoluminescence spectroscopy are done on different meteoric cements firstly identified by classic optical microscopy. Three cement types are identified according to the relative intensity of the bands of their respective cathodoluminescence spectra (350, 380, 430, 500, and 620 nm). From these investigations, we could identify for each meteoric cement different phases of crystalline growth and crystalline dissolution. As a result, a better and more realistic meteoric diagenetic model is proposed. It illustrates the cyclic transformations from vadose zone (unsaturated) to meteoric zone (saturated). To cite this article: R. Chapoulie et al., C. R. Geoscience 337 (2005). 相似文献
9.
Sandrine Vinatier Bruno Bézard Remco de Kok Carrie M. Anderson Robert E. Samuelson Conor A. Nixon Andrei Mamoutkine Ronald C. Carlson Donald E. Jennings Ever A. Guandique Gordon L. Bjoraker F. Michael Flasar Virgil G. Kunde 《Icarus》2010,210(2):852-866
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag. 相似文献
10.
Halipteris finmarchica is one of the most common species of deep‐sea pennatulacean corals in the Northwest Atlantic; it was recently determined to act as a biogenic substrate for other species and as a nursery for fish larvae. Its reproductive cycle was investigated in colonies sampled in 2006 and 2007 along the continental slope of Newfoundland and Labrador (Canada). Halipteris finmarchica exhibits large oocytes (maximum diameter of 1000 μm), which are consistent with lecithotrophic larval development. Female potential fecundity based on mature oocytes just before spawning was ~6 oocytes · polyp?1 (500–6300 oocytes · colony?1); male potential fecundity was 16 spermatocysts · polyp?1 (5500–57,400 spermatocysts · colony?1). Based on statistical analysis of size‐probability frequency distributions, males harboured one cohort of spermatocysts that matured inside 8–11 months, whereas females harboured two distinct cohorts of oocytes; a persistent pool of small ones (≤400 μm) and a small number (~20%) of larger ones that grew from ~400 to >800 μm over a year. Despite this difference in the tempo of oogenesis and spermatogenesis, a synchronic annual spawning was detected. A latitudinal shift in the spawning period occurred from south (April in the Laurentian Channel) to north (May in Grand Banks and July–August in Labrador/Lower Arctic), following the development of the phytoplankton bloom (i.e. sinking of phytodetritus). Prolonged oogenesis with the simultaneous presence of different oocyte classes in a given polyp is likely not uncommon in deep‐sea octocorals and could hamper the detection of annual/seasonal reproduction when sample sizes are low and/or time series discontinued or brief. 相似文献