首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
地球科学   105篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   11篇
  2018年   13篇
  2017年   11篇
  2016年   11篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2004年   1篇
  2000年   1篇
  1997年   2篇
  1992年   1篇
排序方式: 共有105条查询结果,搜索用时 0 毫秒
1.
The results of comprehensive research into the area of the upper reach of the Mzymta River (Western Caucasus) are presented. The evidence of strong earthquakes that struck the study area throughout history is studied. The periods when mud flows and rockslides associated with the earthquakes are identified to fall between 3100–4000 and 700–1200 years ago. Paleoseismological results are correlated to the results of archeological excavations. As a result, it is revealed that the periods of tectonic disasters coincided with the onsets of the period when the area was uninhabited (abandoned) by people. The results of the present comprehensive research provide additional information to specify the seismic hazard and the chronology of human habitation in the region.  相似文献   
2.
3.
4.
The September 24, 1999 Ahram Earthquake in southwestern Iran was moderate in energy (M = 5.0–5.5 from different sources) and did not entail significant destruction and casualities. The tectonic position of the source zone, surficial seismic dislocations, and results of macroseismic and seismological study of this seismic event in the junction zone of the Zagros Fold System and the piedmont plain are described in the paper, including data on rejuvenated ancient ruptures exposed in two trenches excavated across the strike of the regional Kazerun-Borazjan Fault. One of the trenches was driven a few months before and the other a year after this seismic event. The conclusion is drawn that new deformations in the Quaternary near-surface sediments observed at the walls of both trenches may be regarded as unusual seismic ruptures of the Ahram earthquake. These ruptures, described as proved primary seismic dislocations of such a moderate seismic event, are a unique phenomenon in the world seismotectonic practice. The localization of the earthquake source zone in the Kazerun-Borazjan Fault Zone with complex kinematics makes it possible to study the internal structure of one of the most important tectonic lines of the Zagros Fold Region.  相似文献   
5.
Active faults play the key role in the formation of the morphological structures and control the seismicity in the Olekma-Stanovoi seismic zone. The detailed geological-structural and morphotectonic studies of fault zones made it possible to estimate the kinematics of the active faults and their activity degree in the Holocene (the last 10 000 years). The latter include old faults such as, for example, the Stanovoi Suture of the Proterozoic age. Most of these faults are the Late Mesozoic and Cenozoic in age. The studies were aimed at reconstructing the past seismogeological processes and were accompanied by trenching across morphological structures that are presumably associated with zones of active tectonic fractures preliminarily studied by geophysical methods. The applied approach allowed us to substantially specify the available information on the seismotectonics and the potential seismic hazard in the region.  相似文献   
6.
The contribution made by V.V. Beloussov (1907–1990), an outstanding Earth scientist in the former Soviet Union and Russia, to the development of planetary geophysics is considered. Beloussov was a brilliant coordinator of international cooperation and direct inspirer of international scientific programs of paramount importance. He took up one of the key positions in organizing and holding the International Geophysical Year (IGY) in 1957–1958. In 1960, Beloussov was elected President of the International Union of Geodesy and Geophysics and proposed the project “The upper mantle and its influence on the Earth’s crust,” which subsequently became known worldwide as the Upper Mantle Project. The project underlined that the experience of the IGY should be extended to studies of the deep structure of the Earth and the processes taking place in the Earth’s interior. The fulfillment of this and the subsequent Geodynamic project resulted in a breakthrough in the knowledge about the deep structure of the Earth, particularly the structure of the oceans. Beloussov actively advocated integrating science of the Earth, geonomy, and in his scientific research sought a geonomic approach incorporating the entire complex of geological, geophysical, and geochemical data. Beloussov’s scientific heritage contains propositions that are of current importance and can be involved in modern developments of the Earth sciences.  相似文献   
7.
Izvestiya, Atmospheric and Oceanic Physics - The permanent analysis of the hydrogeodeformation (HGD) field is one promising direction in the field of predicting strong earthquakes. As a result of...  相似文献   
8.
Geological and geomorphic manifestations of the source of the earthquake that occurred in the southern Gorny Altai on September 27, 2003, are described. This earthquake, the strongest over the entire history of seismological observations, caused damage to buildings and structures in the Chuya and Kurai basins and was accompanied by exposure of its source at the surface with formation of a system of seismic ruptures trending in the northwestern direction. The linear zone of seismic rupture was traced for more than 70 km on the northern slopes of the North Chuya and South Chuya ranges, and a developed network of related splays was found. The secondary (gravitational and vibrational) seismic dislocations were expressed as downfalls, landslides, and gryphons in the pleistoseist zone. These dislocations occur over an area of approximately 90 × 25 km2 that broadly coincides with the region of quakes having intensities of IX–VII. The paleoseismogeological investigations performed in the source region of the 2003 earthquake have shown that seven seismic events with M = 7.0–8.0 occurred in its source over the last 5000 years with a 500-to 900-year recurrence period. The study of the tectonic setting of the earthquake source in the Gorny Altai has allowed northward tracing of the main seismically active zones of the Mongolian and Gobi Altai, where earthquakes with a magnitude M > 7.0 occurred repeatedly, in particular, during the 20th century, and combination of all mountain systems of the Greater Altai into a common high-magnitude seismotectonic province.  相似文献   
9.
10.
Izvestiya, Atmospheric and Oceanic Physics - As a result of studies conducted in the city of Derbent, it is established that its monumental fortification structures erected at the end of the 560s...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号