首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   7篇
  国内免费   4篇
地球科学   231篇
  2022年   2篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   6篇
  2017年   11篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   7篇
  2012年   7篇
  2011年   13篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   10篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
1.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   

3.
4.
The aim of this paper was to compare the stress and strain quantities that are related to the failure–deformation process of hard rock. The data used here was obtained from laboratory uniaxial compression tests performed on different types of Fennoscandian hard rocks. The failure–deformation process quantities were compared at each deformation stage and for each single specimen. Moreover, geological information such as the rock origin process and the rock characteristics of the specimens were studied and linked to the stress and strain quantities. The purpose was to investigate the influence of the rock origin process and rock characteristics on these quantities. The main results of this study showed that the normalized crack damage lateral strain (ε 3cd/ε 3p ) and the volumetric strain (ε crv?ci and ε v?cd) quantities were strongly affected by the grain size. The normalized and volumetric quantities are weakly dependent on the mineral composition.  相似文献   
5.
A theoretically-based erosion criterion is developed for gravel-bed rivers which incorporates the effect of both grain geometry and turbulent velocity fluctuations. It is derived from a balance of instantaneous drag, lift, and gravity forces operating on individual grains and is calculated for spherical grains arranged in three distinct geometries. To accommodate the temporal variation in bed shear stress, the model includes a stochastic element based on the characteristics of turbulence derived from the flume evidence of McQuivey (1973a, b). In terms of the Shields parameter, results show reasonable agreement with the range of observations quoted from the field and with the experimental data of Fenton and Abbott (1977). Finally, the argument is generalized to cover applications in the wider context of field conditions including a range of grain sizes and flow conditions.  相似文献   
6.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   
7.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   
8.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
9.
The effective medium theory based on the Hertz–Mindlin contact law is the most popular theory to relate dynamic elastic moduli (or elastic velocities) and confining pressure in dry granular media. However, many experimental results proved that the effective medium theory predicts pressure trends lower than experimental ones and over-predicts the shear modulus. To mitigate these mispredictions, several evolutions of the effective medium theory have been presented in the literature. Among these, the model named modified grain contact theory is an empirical approach in which three parametric curves are included in the effective medium theory model. Fitting the parameters of these curves permits to adjust the pressure trends of the Poisson ratio and the bulk modulus. In this paper, we present two variations of the modified grain contact theory model. First, we propose a minor modification in the fitting function for the porosity dependence of the calibration parameters that accounts for non-linearity in the vicinity of the critical porosity. Second, we propose a major modification that reduces the three-step modified grain contact theory model to a two-step model, by skipping the calibration parameter–porosity fit in the model and directly modelling the calibration parameter–pressure relation. In addition to an increased simplicity (the fitting parameters are reduced from 10 to 6), avoiding the porosity fit permits us to apply the model to laboratory data that are not provided with accurate porosity measurements. For this second model, we also estimate the uncertainty of the fitting parameters and the elastic velocities. We tested this model on dry core measurements from literature and we verified that it returns elastic velocity trends as good as the original modified grain contact theory model with a reduced number of fitting parameters. Possible developments of the new model to add predictive power are also discussed.  相似文献   
10.
Thermodynamic stability constants have been estimated for the complexation of iron(III) with catecholate-type siderophores isolated from the marine bacterium Alteromonas luteoviolacea and from the marine cyanobacterium Synechococcus sp. PCC 7002. Stability constants were determined utilizing the “chelate scale” of Taylor et al. (1994). The scale is based upon a linear relationship between the reduction potentials and the pH-independent thermodynamic stability constants for known iron(III) complexes. Log K values for the alterobactin B ferric iron complex are 43.6 ± 1.5 at pH 8.2 and 37.6 ± 1.2 at pH 6, consistent with a shift from bis-catecholate to monosalicylate/monocatecholate iron coordination with decreasing pH. Synechococcus isolates PCC 7002 Nos. 1 and 3 formed iron(III) complexes with stability constants of approximately 38.1 ± 1.2 and 42.3 ± 1.5, respectively. The binding strengths of the iron(III) complexes examined in this study are quite high, suggesting that catecholate siderophores may play a role in the solubilization and biological uptake of iron in the marine environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号