首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   11篇
  国内免费   4篇
地球科学   397篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   19篇
  2015年   9篇
  2014年   17篇
  2013年   23篇
  2012年   16篇
  2011年   21篇
  2010年   18篇
  2009年   22篇
  2008年   18篇
  2007年   10篇
  2006年   17篇
  2005年   6篇
  2004年   18篇
  2003年   20篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   11篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
1.
2.
Based on the experience of the U.S. National Assessment, we propose a program of research and analysis to advance capability for assessment of climate impacts, vulnerabilities, and adaptation options. We identify specific priorities for scientific research on the responses of ecological and socioeconomic systems to climate and other stresses; for improvement in the climatic inputs to impact assessments; and for further development of assessment methods to improve their practical utility to decision-makers. Finally, we propose a new institutional model for assessment, based principally on regional efforts that integrate observations, research, data, applications, and assessment on climate and linked environmental-change issues. The proposed program will require effective collaboration between scientists, resource managers, and other stakeholders, all of whose expertise is needed to define and prioritize key regional issues, characterize relevant uncertainties, and assess potential responses. While both scientifically and organizationally challenging, such an integrated program holds the best promise of advancing our capacity to manage resources and the economy adaptively under a changing climate.  相似文献   
3.
Large volumes of mare basalts are present on the surface of the moon, located preferentially in large impact basins. Mechanisms relating impact basins and mare basalt eruptions have previously been suggested: lunar impacts removed low-density material that may have inhibited eruption, and created cracks for fluid flow [Icarus 139 (1999) 246], and lunar basins have long been described as catchments for magma (e.g., [Rev. Geophys. Space Phys. 18 (1980) 107] and references therein). We present a new model for melt creation under near side lunar basins that is triggered by the impacts themselves. Magma can be produced in two stages. First, crater excavation depressurizes underlying material such that it may melt in-situ. Second, the cratered lithosphere rises isostatically, warping isotherms at the lithosphere-asthenosphere boundary which may initiate convection, in which adiabatic melting can occur. The first stage produces by far the largest volume of melt, but convective melting can continue for up to 350 Ma. We propose that giant impacts account for a large portion of the volume and longevity of mare basalt volcanism, as well as for several compositional groups, including high alumina, high titanium, KREEP-rich, and picritic magmas.  相似文献   
4.
Organic matter in small mesopores in sediments and soils   总被引:1,自引:0,他引:1  
The three-way correlation among organic matter concentrations, specific surface area and small mesopores observed for many soils and sediments led to the hypothesis that enclosure within the pores might explain the apparent protection of organic matter by minerals. We test this hypothesis by examining whether the bulk of organic matter resides within small mesopores. Pore volumes as a function of pore width were measured before and after organic matter removal, and the volume differences ascribed to organic matter filling of pores. Minor changes in small mesopore size distributions upon treatments such as centrifugation and muffling indicate the robustness of the mineral matrices that form these pores. We developed an additional method to assess organic matter densities using high-resolution pycnometry, and used these densities to convert pore volumes to organic matter contents. Although smaller mesopores are shown to have sufficient volumes to contain significant fractions of the total organic matter, only small fractions of total organic matter were found to reside in them. These results are consistent with preferential association between organic matter and aluminous clay particle edges, rather than the largely siliceous clay faces that contribute most surface area and form pore walls. While simple enclosure within smaller mesopores cannot, therefore, explain protection, network effects working at larger size scales may account for exclusion of digestive agents and hence organic matter protection.  相似文献   
5.
Interhemispheric Linkage of Paleoclimate During the Last Glaciation   总被引:4,自引:0,他引:4  
Combined glacial geologic and palynologic data from the southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé in middle latitudes (40°35’–42°25’S) of the Southern Hemisphere Andes suggest (1) that full-glacial or near-full-glacial climate conditions persisted from about 29,400 to 14,550 14C yr BP in late Llanquihue time, (2) that within this late Llanquihue interval mean summer temperature was depressed 6°–8°C compared to modern values during major glacier advances into the outer moraine belt at 29,400, 26,760, 22,295–22,570, and 14,550–14,805 14C yr BP , (3) that summer temperature depression was as great during early Llanquihue as during late Llanquihue time, (4) that climate deteriorated from warmer conditions during the early part to colder conditions during the later part of middle Llanquihue time, (5) that superimposed on long-term climate deterioration are Gramineae peaks on Isla Grande de Chiloé that represent cooling at 44,520–47,110 14C yr BP (T-11), 32,105–35,764 14C yr BP (T-9), 24,895–26,019 14C yr BP (T-7), 21,430–22,774 14C yr BP (T-5), and 13,040–15,200 14C yr BP (T-3), (6) that the initial phase of the glacial/interglacial transition of the last termination involved at least two major steps, one beginning at 14,600 14C yr BP and another at 12,700–13,000 14 C yr BP , and (7) that a late-glacial climate reversal of ≥2–3° C set in close to 12,200 14C yr BP , after an interval of near-interglacial warmth, and continued into Younger Dryas time. The late-glacial climate signal from the southern Chilean Lake District ties into that from proglacial Lago Mascardi in the nearby Argentine Andes, which shows rapid ice recession peaking at 12,400 14C yr BP , followed by a reversal of trend that culminated in Younger-Dryas-age glacier readvance at 11,400–10,200 14C yr BP . Many full- and late-glacial climate shifts in the southern Lake District match those from New Zealand at nearly the same Southern Hemisphere middle latitudes. At the last glacial maximum (LGM), snowline lowering relative to present-day values was nearly the same in the Southern Alps (875 m) and the Chilean Andes (1000 m). Particularly noteworthy are the new Younger-Dryas-age exposure dates of the Lake Misery moraines in Arthur's Pass in the Southern Alps. Moreover, pollen records from the Waikato lowlands on North Island show that a major vegetation shift at close to 14,700 14C yr BP marked the beginning of the last glacial/interglacial transition (Newnham et al. 1989). The synchronous and nearly uniform lowering of snowlines in Southern Hemisphere middle-latitude mountains compared with Northern Hemisphere values suggests global cooling of about the same magnitude in both hemispheres at the LGM. When compared with paleoclimate records from the North Atlantic region, the middle-latitude Southern Hemisphere terrestrial data imply interhemispheric symmetry of the structure and timing of the last glacial/interglacial transition. In both regions atmospheric warming pulses are implicated near the beginning of Oldest Dryas time (~14,600 14C yr BP) and near the Oldest Dryas/Bölling transition (~12,700–13,000 14 C yr BP ). The second of these warming pulses was coincident with resumption of North Atlantic thermohaline circulation similar to that of the modern mode, with strong formation of Lower North Atlantic Deep Water in the Nordic Seas. In both regions, the maximum Bölling-age warmth was achieved at 12,200–12,500 14 C yr BP , and was followed by a reversal in climate trend. In the North Atlantic region, and possibly in middle latitudes of the Southern Hemisphere, this reversal culminated in a Younger-Dryas-age cold pulse. Although changes in ocean circulation can redistribute heat between the hemispheres, they cannot alone account either for the synchronous planetary cooling of the LGM or for the synchronous interhemispheric warming steps of the abrupt glacial-to-interglacial transition. Instead, the dominant interhemispheric climate linkage must feature a global atmospheric signal. The most likely source of this signal is a change in the greenhouse content of the atmosphere. We speculate that the Oldest Dryas warming pulse originated from an increase in atmospheric water-vapor production by half-precession forcing in the tropics. The major thermohaline switch near the Oldest Dryas/Bölling transition then couldhave triggered another increase in tropical water-vapor production to near-interglacial values.  相似文献   
6.
Carrying assorted cargo and covered with paints of varying toxicity, lost intermodal containers may take centuries to degrade on the deep seafloor. In June 2004, scientists from Monterey Bay Aquarium Research Institute (MBARI) discovered a recently lost container during a Remotely Operated Vehicle (ROV) dive on a sediment-covered seabed at 1281 m depth in Monterey Bay National Marine Sanctuary (MBNMS). The site was revisited by ROV in March 2011. Analyses of sediment samples and high-definition video indicate that faunal assemblages on the container’s exterior and the seabed within 10 m of the container differed significantly from those up to 500 m. The container surface provides hard substratum for colonization by taxa typically found in rocky habitats. However, some key taxa that dominate rocky areas were absent or rare on the container, perhaps related to its potential toxicity or limited time for colonization and growth. Ecological effects appear to be restricted to the container surface and the benthos within ∼10 m.  相似文献   
7.
The paper reviews and summarises the literature on regulatory enforcement in fisheries. The focus is on the theoretical literature. First, some of the main contributions from the general economic literature of law enforcement are presented, along with extensions that are considered relevant to the study of fisheries law enforcement. Second, a review of the economic literature of law enforcement applied to the study of fisheries is provided. Finally, the paper presents gaps in the fisheries economics literature on regulatory enforcement and offers some possibilities for future work.  相似文献   
8.
Vulnerability to predation may be high for many megafaunal taxa in deep‐sea sedimentary habitats where physical heterogeneity is low. During ROV observations in a bathyal sediment plain off Central California, juveniles of the lithodid crab Neolithodes diomedeae were frequently observed on or under the holothurian (sea cucumber) Scotoplanes sp. A, and are hypothesized to benefit from this association as a nursery or refugium from predation. Ninety‐six percent (n = 574 of 599) of the juvenile N. diomedeae observed (density varied from 0.02–0.75/m2 among sites and seasons) in the study area were associated with Scotoplanes sp. A. Of the 2596 Scotoplanes sp. A observed (density varied from 0.48 to 25.90/m2), 22% were attended by at least one juvenile crab, and rarely two crabs (n = 4). Solitary N. diomedeae were rarely observed. This decapod–holothurian symbiosis appears to be largely commensal, with juvenile crabs (carapace width = 0.03–0.31 ×  holothurian length) observed on or beneath Scotoplanes sp. A in a habitat with few refugia from epibenthic predators. Other hypotheses may explain or enhance the potential benefits of the association for N. diomedeae, such as elevated food availability due to the activities of Scotoplanes sp. A. The relationship may be mutualistic if there is a benefit for the holothurian, including the removal of epizoic parasites. Ultimately, the nursery or other effects on the population dynamics of N. diomedeae may be minimal in low‐relief, sediment‐dominated habitats, as very few sub‐adult crabs were observed in the study area and were likely consumed upon outgrowing their refugia. While sedimentary habitats may be a sink for N. diomedeae populations, growth of juvenile crabs during their association with Scotoplanes sp. A should increase energy flow to its predator populations. This association has not been reported previously but may be expected in sediment‐dominated habitats where these species overlap.  相似文献   
9.
10.
The Triassic?Jurassic (Tr?J) boundary marks a major extinction event, which (~200 Ma) resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr?J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites?Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites?Pinuspollenites Assemblage, and the Sinemurian Perinopollenites?Cycadopites Assemblage. The Tr?J boundary is placed between bed 44 and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio?Ferganoconcha and Waagenoperna?Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation, Unio?Ferganoconcha and Waagenoperna?Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine?littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号